Huiqiang Lou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9319544/publications.pdf Version: 2024-02-01

Ниомистои

#	Article	IF	CITATIONS
1	Metabolic remodeling maintains a reducing environment for rapid activation of the yeast DNA replication checkpoint. EMBO Journal, 2022, 41, e108290.	7.8	8
2	Cohesin in DNA damage response and double-strand break repair. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 333-350.	5.2	5
3	Microproteins: from behind the scenes to the spotlight. Genome Instability & Disease, 2021, 2, 225-239.	1.1	5
4	Improved Production of Xylanase in Pichia pastoris and Its Application in Xylose Production From Xylan. Frontiers in Bioengineering and Biotechnology, 2021, 9, 690702.	4.1	6
5	Novel β-mannanase/GLP-1 fusion peptide high effectively ameliorates obesity in a mouse model by modifying balance of gut microbiota. International Journal of Biological Macromolecules, 2021, 191, 753-763.	7.5	25
6	Stochasticity Triggers Activation of the S-phase Checkpoint Pathway in Budding Yeast. Physical Review X, 2021, 11, .	8.9	5
7	Characterization of the dimeric CMG/pre-initiation complex and its transition into DNA replication forks. Cellular and Molecular Life Sciences, 2020, 77, 3041-3058.	5.4	7
8	Mthfd2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Reports, 2020, 15, 529-545.	4.8	25
9	The acetyltransferase Eco1 elicits cohesin dimerization during S phase. Journal of Biological Chemistry, 2020, 295, 7554-7565.	3.4	16
10	Two dominant selectable markers for genetic manipulation in Neurospora crassa. Current Genetics, 2020, 66, 835-847.	1.7	9
11	The Emerging Roles of Fox Family Transcription Factors in Chromosome Replication, Organization, and Genome Stability. Cells, 2020, 9, 258.	4.1	21
12	Post-Translational Modifications Aid Archaeal Survival. Biomolecules, 2020, 10, 584.	4.0	10
13	Mck1 defines a key S-phase checkpoint effector in response to various degrees of replication threats. PLoS Genetics, 2019, 15, e1008136.	3.5	9
14	Highly Efficient Degradation of Xylan into Xylose by a Single Enzyme. ACS Sustainable Chemistry and Engineering, 2019, 7, 11360-11368.	6.7	20
15	Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genetics, 2019, 15, e1007685.	3.5	19
16	Thermophilic xylanases: from bench to bottle. Critical Reviews in Biotechnology, 2018, 38, 989-1002.	9.0	57
17	The DNA Pol Ϊμ stimulatory activity of Mrc1 is modulated by phosphorylation. Cell Cycle, 2018, 17, 64-72.	2.6	8
18	Characterization of Two Endo-β-1, 4-Xylanases from Myceliophthora thermophila and Their Saccharification Efficiencies, Synergistic with Commercial Cellulase. Frontiers in Microbiology, 2018, 9, 233.	3.5	52

Huiqiang Lou

#	Article	IF	CITATIONS
19	Rtt101â€Mms1â€Mms22 coordinates replicationâ€coupled sister chromatid cohesion and nucleosome assembly. EMBO Reports, 2017, 18, 1294-1305.	4.5	31
20	Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes and Development, 2017, 31, 2405-2415.	5.9	53
21	Sld3-MCM Interaction Facilitated by Dbf4-Dependent Kinase Defines an Essential Step in Eukaryotic DNA Replication Initiation. Frontiers in Microbiology, 2016, 7, 885.	3.5	13
22	Structural basis of Zika virus helicase in recognizing its substrates. Protein and Cell, 2016, 7, 562-570.	11.0	72
23	Cell-Cycle-Regulated Interaction between Mcm10 and Double Hexameric Mcm2-7 Is Required for Helicase Splitting and Activation during S Phase. Cell Reports, 2015, 13, 2576-2586.	6.4	51
24	Long-Lasting Gene Conversion Shapes the Convergent Evolution of the Critical Methanogenesis Genes. G3: Genes, Genomes, Genetics, 2015, 5, 2475-2486.	1.8	9
25	The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation. Frontiers in Microbiology, 2015, 6, 1247.	3.5	15
26	Mutations in RECQL Gene Are Associated with Predisposition to Breast Cancer. PLoS Genetics, 2015, 11, e1005228.	3.5	89
27	From gene editing to genome reconstitution: evolving techniques in yeast. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2015, 37, 1021-8.	0.2	0
28	The ribosomal protein S26 regulates p53 activity in response to DNA damage. Oncogene, 2014, 33, 2225-2235.	5.9	86
29	A Prototypic Lysine Methyltransferase 4 from Archaea with Degenerate Sequence Specificity Methylates Chromatin Proteins Sul7d and Cren7 in Different Patterns. Journal of Biological Chemistry, 2013, 288, 13728-13740.	3.4	28
30	hPrimpol1/CCDC111 is a human DNA primaseâ€polymerase required for the maintenance of genome integrity. EMBO Reports, 2013, 14, 1104-1112.	4.5	166
31	Regulation of Actinomycin D induced upregulation of Mdm2 in H1299 cells. DNA Repair, 2012, 11, 112-119.	2.8	4
32	Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles, 2010, 14, 107-117.	2.3	9
33	Mrc1 and DNA Polymerase É> Function Together in Linking DNA Replication and the S Phase Checkpoint. Molecular Cell, 2008, 32, 106-117.	9.7	183
34	Modulation of Hyperthermophilic DNA Polymerase Activity by Archaeal Chromatin Proteins. Journal of Biological Chemistry, 2004, 279, 127-132.	3.4	17
35	Cleavage of double-stranded DNA by the intrinsic 3′-5′ exonuclease activity of DNA polymerase B1 from the hyperthermophilic archaeonSulfolobus solfataricusat high temperature. FEMS Microbiology Letters, 2004, 231, 111-117.	1.8	10
36	Effect of DNA binding protein Ssh12 from hyperthermophilic archaeonSulfolobus shibatae on DNA supercoiling. Science in China Series C: Life Sciences, 1999, 42, 401-408.	1.3	0

#	Article	IF	CITATIONS
37	HDA-2-Containing Complex Is Required for Activation of <i>Catalase-3</i> Expression in Neurospora crassa. MBio, 0, , .	4.1	1