
Xing-Zhen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9318804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Universal Strategy for Constructing Robust and Antifouling Cellulose Nanocrystal Coating. Advanced Functional Materials, 2022, 32, 2109989.	14.9	51
2	Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science, 2022, 622, 612-624.	9.4	13
3	The LCK-14-3-3ζ-TRPM8 axis regulates TRPM8 function/assembly and promotes pancreatic cancer malignancy. Cell Death and Disease, 2022, 13, .	6.3	6
4	TSPAN1 promotes autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and autophagy via the <i>MIR454</i> -FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy, 2021, 17, 3175-3195.	9.1	47
5	TRIM4 interacts with TRPM8 and regulates its channel function through K423â€mediated ubiquitination. Journal of Cellular Physiology, 2021, 236, 2934-2949.	4.1	8
6	Auto-inhibitory intramolecular S5/S6 interaction in the TRPV6 channel regulates breast cancer cell migration and invasion. Communications Biology, 2021, 4, 990.	4.4	8
7	Ion permeation controlled by hydrophobic residues and proton binding in the proton-activated chloride channel. IScience, 2021, 24, 103395.	4.1	4
8	STYK1 promotes autophagy through enhancing the assembly of autophagy-specific class III phosphatidylinositol 3-kinase complex I. Autophagy, 2020, 16, 1786-1806.	9.1	28
9	Autoinhibition of TRPV6 Channel and Regulation by PIP2. IScience, 2020, 23, 101444.	4.1	19
10	Transient Receptor Potential Melastatin 8 (TRPM8) Channel Regulates Proliferation and Migration of Breast Cancer Cells by Activating the AMPK-ULK1 Pathway to Enhance Basal Autophagy. Frontiers in Oncology, 2020, 10, 573127.	2.8	21
11	LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Molecular Cancer, 2020, 19, 118.	19.2	233
12	The Fabp5/calnexin complex is a prerequisite for sensitization of mice to experimental autoimmune encephalomyelitis. FASEB Journal, 2020, 34, 16662-16675.	0.5	7
13	Role of PKR in the Inhibition of Proliferation and Translation by Polycystin-1. BioMed Research International, 2019, 2019, 1-8.	1.9	5
14	Polycystin-1 Inhibits Cell Proliferation through Phosphatase PP2A/B56 <i>α</i> . BioMed Research International, 2019, 2019, 1-8.	1.9	3
15	The ion channel function of polycystinâ€1 in the polycystinâ€1/polycystinâ€2 complex. EMBO Reports, 2019, 20, e48336.	4.5	59
16	Two pools of IRE1α in cardiac and skeletal muscle cells. FASEB Journal, 2019, 33, 8892-8904.	0.5	22
17	Tauroursodeoxycholic acid attenuates cyclosporine-induced renal fibrogenesis in the mouse model. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1210-1216.	2.4	4
18	Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Biochemistry, 2019, 58, 2105-2115.	2.5	6

#	Article	IF	CITATIONS
19	The kidney anion exchanger 1 affects tight junction properties via claudin-4. Scientific Reports, 2019, 9, 3099.	3.3	10
20	Activation of the calcium-sensing receptor attenuates TRPV6-dependent intestinal calcium absorption. JCI Insight, 2019, 4, .	5.0	25
21	Purification and functional characterization of the vacuolar malate transporter tDT from Arabidopsis. Journal of Biological Chemistry, 2018, 293, 4180-4190.	3.4	24
22	Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2. Cell Reports, 2018, 22, 1560-1573.	6.4	37
23	Identification and characterization of hydrophobic gate residues in TRP channels. FASEB Journal, 2018, 32, 639-653.	0.5	32
24	Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels. Nature Communications, 2018, 9, 2302.	12.8	51
25	The S4–ÂÂS5 linker – gearbox of TRP channel gating. Cell Calcium, 2017, 67, 156-165.	2.4	28
26	Polycystin-1 inhibits eIF2α phosphorylation and cell apoptosis through a PKR-eIF2α pathway. Scientific Reports, 2017, 7, 11493.	3.3	6
27	Identification of Key Residues for Urate Specific Transport in Human Glucose Transporter 9 (hSLC2A9). Scientific Reports, 2017, 7, 41167.	3.3	8
28	Pygopus2 inhibits the efficacy of paclitaxel-induced apoptosis and induces multidrug resistance in human glioma cells. Oncotarget, 2017, 8, 27915-27928.	1.8	7
29	ldentification of glycerol-3-phosphate dehydrogenase 1 as a tumour suppressor in human breast cancer. Oncotarget, 2017, 8, 101309-101324.	1.8	31
30	Ethnic Differences in Genetic Ion Channelopathies Associated with Sudden Cardiac Death: A Systematic Review and Meta-Analysis. Annals of Clinical and Laboratory Science, 2017, 47, 481-490.	0.2	9
31	Prognostic significance of PLIN1 expression in human breast cancer. Oncotarget, 2016, 7, 54488-54502.	1.8	38
32	Regulation of TRPP3 Channel Function by N-terminal Domain Palmitoylation and Phosphorylation. Journal of Biological Chemistry, 2016, 291, 25678-25691.	3.4	14
33	Far Upstream Element-Binding Protein 1 Binds the 3′ Untranslated Region of PKD2 and Suppresses Its Translation. Journal of the American Society of Nephrology: JASN, 2016, 27, 2645-2657.	6.1	10
34	Zebrafish TARP Cacng2 is required for the expression and normal development of AMPA receptors at excitatory synapses. Developmental Neurobiology, 2016, 76, 487-506.	3.0	5
35	Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca2+. Scientific Reports, 2015, 5, 15752.	3.3	9
36	Filamin-A Increases the Stability and Plasma Membrane Expression of Polycystin-2. PLoS ONE, 2015, 10, e0123018.	2.5	13

#	Article	IF	CITATIONS
37	Critical Roles of Two Hydrophobic Residues within Human Glucose Transporter 9 (hSLC2A9) in Substrate Selectivity and Urate Transport. Journal of Biological Chemistry, 2015, 290, 15292-15303.	3.4	13
38	A novel PKD2L1 C-terminal domain critical for trimerization and channel function. Scientific Reports, 2015, 5, 9460.	3.3	11
39	Co-chaperone Specificity in Gating of the Polypeptide Conducting Channel in the Membrane of the Human Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 18621-18635.	3.4	32
40	Expression of polycystins and fibrocystin on primary cilia of lung cells. Biochemistry and Cell Biology, 2014, 92, 547-554.	2.0	13
41	Identification of Homer1 as a Potential Prognostic Marker for Intrahepatic Cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3299-3304.	1.2	6
42	Translational upâ€regulation of polycystic kidney disease protein PKD2 by endoplasmic reticulum stress. FASEB Journal, 2013, 27, 4998-5009.	0.5	10
43	Filamin Interacts with Epithelial Sodium Channel and Inhibits Its Channel Function. Journal of Biological Chemistry, 2013, 288, 264-273.	3.4	19
44	Receptor for Activated C Kinase 1 (RACK1) Inhibits Function of Transient Receptor Potential (TRP)-type Channel Pkd2L1 through Physical Interaction. Journal of Biological Chemistry, 2012, 287, 6551-6561.	3.4	23
45	Structural Interaction and Functional Regulation of Polycystin-2 by Filamin. PLoS ONE, 2012, 7, e40448.	2.5	25
46	Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11558-11563.	7.1	163
47	Submembraneous microtubule cytoskeleton: interaction of TRPP2 with the cell cytoskeleton. FEBS Journal, 2008, 275, 4675-4683.	4.7	31
48	Polycystin-2 Expression Is Regulated by a PC2-binding Domain in the Intracellular Portion of Fibrocystin. Journal of Biological Chemistry, 2008, 283, 31559-31566.	3.4	63
49	Polycystin-2 down-regulates cell proliferation via promoting PERK-dependent phosphorylation of eIF2α. Human Molecular Genetics, 2008, 17, 3254-3262.	2.9	50
50	Polycystin-2 is regulated by endoplasmic reticulum-associated degradation. Human Molecular Genetics, 2008, 17, 1109-1119.	2.9	50
51	Fibrocystin/Polyductin Modulates Renal Tubular Formation by Regulating Polycystin-2 Expression and Function. Journal of the American Society of Nephrology: JASN, 2008, 19, 455-468.	6.1	123
52	Inhibition of TRPP3 Channel by Amiloride and Analogs. Molecular Pharmacology, 2007, 72, 1576-1585.	2.3	60
53	The Cytoskeletal Connection to Ion Channels as a Potential Mechanosensory Mechanism: Lessons from Polycystinâ€⊋ (TRPP2). Current Topics in Membranes, 2007, 59, 233-296.	0.9	4
54	Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. Journal of Physiology, 2007, 579, 717-728.	2.9	35

#	Article	IF	CITATIONS
55	Detecting protein–protein interactions by far western blotting. Nature Protocols, 2007, 2, 3278-3284.	12.0	287
56	Direct binding of αâ€actinin enhances TRPP3 channel activity. Journal of Neurochemistry, 2007, 103, 2391-2400.	3.9	77
57	Permeation and inhibition of polycystin-l channel by monovalent organic cations. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 197-205.	2.6	13
58	Kinesin-2 mediates physical and functional interactions between polycystin-2 and fibrocystin. Human Molecular Genetics, 2006, 15, 3280-3292.	2.9	115
59	Inhibition of polycystin-L channel by the Chinese herb Sparganum stoloniferum BuchHam Canadian Journal of Physiology and Pharmacology, 2006, 84, 923-927.	1.4	3
60	More than colocalizing with polycystin-1, polycystin-l is in the centrosome. American Journal of Physiology - Renal Physiology, 2006, 291, F395-F406.	2.7	15
61	Polycystin-2 Cation Channel Function Is under the Control of Microtubular Structures in Primary Cilia of Renal Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 37566-37575.	3.4	66
62	Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin. Journal of Physiology, 2005, 566, 309-325.	2.9	37
63	Effect of hydro-osmotic pressure on polycystin-2 channel function in the human syncytiotrophoblast. Pflugers Archiv European Journal of Physiology, 2005, 451, 294-303.	2.8	34
64	The Broadly Selective Human Na+/Nucleoside Cotransporter(hCNT3) Exhibits Novel Cation-coupled Nucleoside TransportCharacteristics. Journal of Biological Chemistry, 2005, 280, 25436-25449.	3.4	73
65	Alpha-actinin associates with polycystin-2 and regulates its channel activity. Human Molecular Genetics, 2005, 14, 1587-1603.	2.9	100
66	PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2311-2316.	7.1	160
67	Electrophysiological characterization of a recombinant human Na+-coupled nucleoside transporter (hCNT1) produced inXenopusoocytes. Journal of Physiology, 2004, 558, 807-823.	2.9	84
68	A modified mammalian tandem affinity purification procedure to prepare functional polycystin-2 channel. FEBS Letters, 2004, 576, 231-236.	2.8	19
69	Troponin I Binds Polycystin-I and Inhibits Its Calcium-Induced Channel Activation. Biochemistry, 2003, 42, 7618-7625.	2.5	27
70	Polycystin-2 Interacts with Troponin I, an Angiogenesis Inhibitorâ€. Biochemistry, 2003, 42, 450-457.	2.5	72
71	Polycystin-2 Associates with Tropomyosin-1, an Actin Microfilament Component. Journal of Molecular Biology, 2003, 325, 949-962.	4.2	80
72	A Novel Gene Encoding a TIG Multiple Domain Protein Is a Positional Candidate for Autosomal Recessive Polycystic Kidney Disease. Genomics, 2002, 80, 96-104.	2.9	65

#	Article	IF	CITATIONS
73	The calciumâ€binding EFâ€hand in polycystin‣ is not a domain for channel activation and ensuing inactivation. FEBS Letters, 2002, 516, 270-278.	2.8	41
74	Modulation of the human polycystin-L channel by voltage and divalent cations. FEBS Letters, 2002, 525, 71-76.	2.8	22
75	Polycystin-2 Is a Novel Cation Channel Implicated in Defective Intracellular Ca2+ Homeostasis in Polycystic Kidney Disease. Biochemical and Biophysical Research Communications, 2001, 282, 341-350.	2.1	218
76	Transport Function of the Naturally Occurring Pathogenic Polycystin-2 Mutant, R742X. Biochemical and Biophysical Research Communications, 2001, 282, 1251-1256.	2.1	67
77	Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na+-Nucleoside Cotransporter Proteins (hCNT3 and mCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System cib). Journal of Biological Chemistry, 2001, 276, 2914-2927.	3.4	302
78	Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2. Pharmaceutical Research, 2000, 17, 526-532.	3.5	85
79	A Rat Kidney-specific Calcium Transporter in the Distal Nephron. Journal of Biological Chemistry, 2000, 275, 28186-28194.	3.4	137
80	Functional Roles of Histidine and Tyrosine Residues in the H+-Peptide Transporter PepT1. Biochemical and Biophysical Research Communications, 2000, 272, 726-730.	2.1	90
81	Human Calcium Transport Protein CaT1. Biochemical and Biophysical Research Communications, 2000, 278, 326-332.	2.1	190
82	Stoichiometry and Kinetics of the High-affinity H+-coupled Peptide Transporter PepT2. Journal of Biological Chemistry, 1999, 274, 2773-2779.	3.4	61
83	Polycystin-L is a calcium-regulated cation channel permeable to calcium ions. Nature, 1999, 401, 383-386.	27.8	200
84	Yeast SMF1 Mediates H+-coupled Iron Uptake with Concomitant Uncoupled Cation Currents. Journal of Biological Chemistry, 1999, 274, 35089-35094.	3.4	137
85	A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature, 1999, 399, 70-75.	27.8	822
86	Molecular Cloning and Characterization of a Channel-like Transporter Mediating Intestinal Calcium Absorption. Journal of Biological Chemistry, 1999, 274, 22739-22746.	3.4	546
87	Title is missing!. Nature, 1999, 401, 383-386.	27.8	110
88	Molecular and functional analysis of SDCT2, a novel rat sodium-dependent dicarboxylate transporter. Journal of Clinical Investigation, 1999, 103, 1159-1168.	8.2	95
89	Molecular genetics of cystinuria: Mutation analysis of SLC3A1 and evidence for another gene in the Type I (silent) phenotype. Kidney International, 1998, 54, 48-55.	5.2	70
90	Characterization of a Rat Na+-Dicarboxylate Cotransporter. Journal of Biological Chemistry, 1998, 273, 20972-20981.	3.4	99