Pierre Barraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9317267/publications.pdf

Version: 2024-02-01

394421 377865 1,345 45 19 citations h-index papers

34 g-index 47 47 47 1938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of RNA-cofactor conjugates and structural exploration of RNA recognition by an m6A RNA methyltransferase. Nucleic Acids Research, 2022, 50, 5793-5806.	14.5	4
2	A Method to Monitor the Introduction of Posttranscriptional Modifications in tRNAs with NMR Spectroscopy. Methods in Molecular Biology, 2021, 2298, 307-323.	0.9	3
3	Structural studies of RNase M5 reveal two-metal-ion supported two-step dsRNA cleavage for 5S rRNA maturation. RNA Biology, 2021, 18, 1-11.	3.1	1
4	Instrumental analysis of RNA modifications. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 178-204.	5.2	26
5	Transportin-1: A Nuclear Import Receptor with Moonlighting Functions. Frontiers in Molecular Biosciences, 2021, 8, 638149.	3.5	11
6	DNA topoisomerase 3 is required for efficient germ cell quality control. Journal of Cell Biology, 2021, 220, .	5.2	8
7	Caenorhabditis elegans RMI2 functional homolog-2 (RMIF-2) and RMI1 (RMH-1) have both overlapping and distinct meiotic functions within the BTR complex. PLoS Genetics, 2021, 17, e1009663.	3.5	5
8	Overview of the Nucleic-Acid Binding Properties of the HIV-1 Nucleocapsid Protein in Its Different Maturation States. Viruses, 2020, 12, 1109.	3.3	11
9	Structures of B.Âsubtilis Maturation RNases Captured on 50S Ribosome with Pre-rRNAs. Molecular Cell, 2020, 80, 227-236.e5.	9.7	12
10	1H, 15N chemical shift assignments of the imino groups of yeast tRNAPhe: influence of the post-transcriptional modifications. Biomolecular NMR Assignments, 2020, 14, 169-174.	0.8	8
11	Preparation of Yeast tRNA Sample for NMR Spectroscopy. Bio-protocol, 2020, 10, e3646.	0.4	5
12	Time-resolved NMR monitoring of tRNA maturation. Nature Communications, 2019, 10, 3373.	12.8	53
13	Conformational Stability Adaptation of a Double-Stranded RNA-Binding Domain to Transfer RNA Ligand. Biochemistry, 2019, 58, 2463-2473.	2.5	5
14	Bisubstrate analogues as structural tools to investigate m ⁶ A methyltransferase active sites. RNA Biology, 2019, 16, 798-808.	3.1	24
15	Benefits of stable isotope labeling in RNA analysis. Biological Chemistry, 2019, 400, 847-865.	2.5	14
16	To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs. IUBMB Life, 2019, 71, 1126-1140.	3.4	46
17	Structural characterization of B. subtilis m1A22 tRNA methyltransferase TrmK: insights into tRNA recognition. Nucleic Acids Research, 2019, 47, 4736-4750.	14.5	9
18	Design of cross-linked RNA/protein complexes for structural studies. Biochimie, 2019, 164, 95-98.	2.6	1

#	Article	IF	Citations
19	The NMR signature of gluconoylation: a frequent N-terminal modification of isotope-labeled proteins. Journal of Biomolecular NMR, 2019, 73, 71-79.	2.8	8
20	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
21	Molecular basis for transfer RNA recognition by the double-stranded RNA-binding domain of human dihydrouridine synthase 2. Nucleic Acids Research, 2019, 47, 3117-3126.	14.5	20
22	Modulation of the HIV nucleocapsid dynamics finely tunes its RNA-binding properties during virion genesis. Nucleic Acids Research, 2018, 46, 9699-9710.	14.5	6
23	Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Research, 2017, 45, 6037-6050.	14.5	14
24	m1A Postâ€Transcriptional Modification in tRNAs. Biomolecules, 2017, 7, 20.	4.0	108
25	Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. ELife, 2017, 6, .	6.0	72
26	Backbone resonance assignments of the m1A22 tRNA methyltransferase TrmK from Bacillus subtilis. Biomolecular NMR Assignments, 2016, 10, 253-257.	0.8	2
27	The m1A58 modification in eubacterial tRNA: An overview of tRNA recognition and mechanism of catalysis by Trml. Biophysical Chemistry, 2016, 210, 27-34.	2.8	20
28	Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers. PLoS ONE, 2014, 9, e102150.	2.5	15
29	Functions of double-stranded RNA-binding domains in nucleocytoplasmic transport. RNA Biology, 2014, 11, 1226-1232.	3.1	28
30	A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1852-61.	7.1	70
31	RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cellular and Molecular Life Sciences, 2013, 70, 1875-95.	5.4	189
32	Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. Journal of Biomolecular NMR, 2013, 55, 119-138.	2.8	61
33	The Interaction between tRNALys3 and the Primer Activation Signal Deciphered by NMR Spectroscopy. PLoS ONE, 2013, 8, e64700.	2.5	10
34	RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes and Development, 2012, 26, 683-692.	5.9	53
35	Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Research, 2012, 169, 324-339.	2.2	37
36	Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA. Biochimie, 2012, 94, 1499-1509.	2.6	18

#	Article	IF	CITATIONS
37	A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. Journal of Biomolecular NMR, 2012, 53, 93-101.	2.8	32
38	ADAR Proteins: Double-stranded RNA and Z-DNA Binding Domains. Current Topics in Microbiology and Immunology, 2011, 353, 35-60.	1.1	76
39	Structural comparison of tRNA m1A58 methyltransferases revealed different molecular strategies to maintain their oligomeric architecture under extreme conditions. BMC Structural Biology, 2011, 11, 48.	2.3	18
40	An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO Journal, 2011, 30, 4223-4235.	7.8	45
41	Optimizing HSQC experiment for the observation of exchange broadened signals in RNA–protein complexes. Comptes Rendus Chimie, 2008, 11, 474-479.	0.5	7
42	Crystal Structure of Thermus thermophilus tRNA m1A58 Methyltransferase and Biophysical Characterization of Its Interaction with tRNA. Journal of Molecular Biology, 2008, 377, 535-550.	4.2	49
43	A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Nucleic Acids Research, 2008, 36, 4894-4901.	14.5	45
44	Advances in the Structural Understanding of Vif Proteins. Current HIV Research, 2008, 6, 91-99.	0.5	42
45	New insights into the formation of HIV-1 reverse transcription initiation complex. Biochimie, 2007, 89, 1204-1210.	2.6	37