Dongyang Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316670/publications.pdf

Version: 2024-02-01

759233 713466 28 449 12 21 h-index citations g-index papers 36 36 36 239 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	New Concepts in Ophiolites, Oceanic Lithosphere and Podiform Chromites. , 2021, , 968-993.		3
2	Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2021, 2, 198-212.	29.7	40
3	Fingerprints of the Kerguelen Mantle Plume in Southern Tibet: Evidence from Early Cretaceous Magmatism in the Tethyan Himalaya. Journal of Geology, 2021, 129, 207-231.	1.4	3
4	Diamond and Other Exotic Mineral-Bearing Ophiolites on the Globe: A Key to Understand the Discovery of New Minerals and Formation of Ophiolitic Podiform Chromitite. Crystals, 2021, 11, 1362.	2.2	3
5	Mineralogy and Geochemistry of the High r Podiform Chromitite from the Cuobuzha Ophiolite, Yarlung Zangbo Suture Zone, Western Tibet, China: Implication for its Origin. Acta Geologica Sinica, 2020, 94, 75-89.	1.4	3
6	Comment on "Comparison of enigmatic diamonds from the tolbachik arc volcano (Kamchatka) and Tibetan ophiolites: Assessing the role of contamination by synthetic materials―by. Gondwana Research, 2020, 79, 301-303.	6.0	12
7	Origin of the Diamonds within Chromitite from the Mirdita Ophiolite (Albania) and its Geological Significance. Acta Geologica Sinica, 2020, 94, 64-65.	1.4	2
8	Geological Evidence does not Support a Shallow Origin for Diamonds in Ophiolite. Acta Geologica Sinica, 2020, 94, 70-72.	1.4	0
9	Fingerprints of the Kerguelen Mantle Plume in Southern Tibet: Evidence from Early Cretaceous Magmatism in the Tethyan Himalaya. Acta Geologica Sinica, 2020, 94, 29-29.	1.4	O
10	Tectonic Evolution of Neotethys Ocean: Evidence of Ophiolites and Ocean Plate Stratigraphy from the Northern and Southern belts in the Western Yarlung Zangbo Suture Zone, Tibet. Acta Geologica Sinica, 2020, 94, 30-30.	1.4	1
11	Geochronology and Geochemistry of Gabbros from Moaâ€Baracoa Ophiolitic Massif, Eastern Cuba: Implication for Early Cretaceous SSZ Magmatism. Acta Geologica Sinica, 2020, 94, 47-48.	1.4	1
12	Precambrian zircons in chromitites of the Cretaceous Aladag ophiolite (Turkey) indicate deep crustal recycling in oceanic mantle. Precambrian Research, 2020, 350, 105838.	2.7	11
13	Radiolarian Biochronology, Detrital Zircon Geochronological and Geochemical Constraints on Provenance and Depositional Environment of Cherts in the Southern Belt of the Western Yarlung Zangbo Suture Zone, Tibet. Journal of Geology, 2020, 128, 535-562.	1.4	4
14	Mineralogy and geochemistry of peridotites and chromitites in the Aladag Ophiolite (southern) Tj ETQq0 0 0 rgB1 176, 958-974.	Overloc 2.1	k 10 Tf 50 22 26
15	Diamond in Oceanic Peridotites and Chromitites: Evidence for Deep Recycled Mantle in the Global Ophiolite Record. Acta Geologica Sinica, 2019, 93, 168-170.	1.4	1
16	A shallow origin for diamonds in ophiolitic chromitites: COMMENT. Geology, 2019, 47, e475-e475.	4.4	6
17	Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle. Engineering, 2019, 5, 406-420.	6.7	19
18	Carbon and nitrogen isotopes and mineral inclusions in diamonds from chromitites of the Mirdita ophiolite (Albania) demonstrate recycling of oceanic crust into the mantle. American Mineralogist, 2019, 104, 485-500.	1.9	28

#	Article	IF	CITATIONS
19	Petrology and geochemistry of the high-Cr podiform chromitites of the KÃ \P ycegiz ophiolite, southwest Turkey: implications for the multi-stage evolution of the oceanic upper mantle. Mineralogy and Petrology, 2018, 112, 685-704.	1.1	15
20	Melt evolution of upper mantle peridotites and mafic dikes in the northern ophiolite belt of the western Yarlung Zangbo suture zone (southern Tibet). Lithosphere, 2018, 10, 109-132.	1.4	29
21	Multiple episodes of melting, depletion, and enrichment of the Tethyan mantle: Petrogenesis of the peridotites and chromitites in the Jurassic Skenderbeu massif, Mirdita ophiolite, Albania. Lithosphere, 2018, 10, 54-78.	1.4	28
22	Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti–Karsanti chromitite, Turkey. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	23
23	Geochemistry and tectonic significance of the Gongzhu peridotites in the northern branch of the western Yarlung Zangbo ophiolitic belt, western Tibet. Mineralogy and Petrology, 2017, 111, 729-746.	1.1	15
24	Geochemical, Geochronological, and Sr-Nd Isotopic Constraints on the Origin of the Mafic Dikes from the Pozanti-Karsanti Ophiolite: Implications for Tectonic Evolution. Journal of Geology, 2017, 125, 223-239.	1.4	22
25	Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. American Mineralogist, 2017, , .	1.9	9
26	Discovery and Significance of Diamonds and Moissanites in Chromitite within the Skenderbeu Massif of the Mirdita Zone Ophiolite, West Albania. Acta Geologica Sinica, 2017, 91, 882-897.	1.4	18
27	Tectonic Evolution of the Western Yarlung Zangbo Ophiolitic Belt, Tibet: Implications from the Petrology, Mineralogy, and Geochemistry of the Peridotites. Journal of Geology, 2016, 124, 353-376.	1.4	43
28	Geochronology and geochemistry of basaltic lavas in the Dongbo and Purang ophiolites of the Yarlung-Zangbo Suture zone: Plume-influenced continental margin-type oceanic lithosphere in southern Tibet. Gondwana Research, 2015, 27, 701-718.	6.0	72