Patrick Laufs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9316545/publications.pdf

Version: 2024-02-01

49 papers

4,806 citations

172457
29
h-index

214800 47 g-index

53 all docs 53 docs citations

53 times ranked 4549 citing authors

#	Article	IF	CITATIONS
1	The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant Cell, 2006, 18, 2929-2945.	6.6	513
2	MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development (Cambridge), 2004, 131, 4311-4322.	2.5	481
3	Model for the regulation of <i>Arabidopsis thaliana</i> leaf margin development. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3424-3429.	7.1	399
4	A Conserved Molecular Framework for Compound Leaf Development. Science, 2008, 322, 1835-1839.	12.6	320
5	Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins. Current Biology, 2008, 18, 1943-1948.	3.9	302
6	Interplay of miR164, <i>CUPâ€SHAPED COTYLEDON</i> genes and <i>LATERAL SUPPRESSOR</i> controls axillary meristem formation in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 55, 65-76.	5.7	246
7	Cellular Parameters of the Shoot Apical Meristem in Arabidopsis. Plant Cell, 1998, 10, 1375-1389.	6.6	230
8	In Vivo Analysis of Cell Division, Cell Growth, and Differentiation at the Shoot Apical Meristem in Arabidopsis. Plant Cell, 2004, 16, 74-87.	6.6	199
9	Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant Journal, 2001, 28, 225-235.	5.7	198
10	Evolution and Diverse Roles of the <i>CUP-SHAPED COTYLEDON </i> Genes in <i> Arabidopsis </i> Leaf Development Â. Plant Cell, 2011, 23, 54-68.	6.6	165
11	Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling. Plant Cell, 2006, 18, 1188-1198.	6.6	164
12	Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis. BMC Evolutionary Biology, 2008, 8, 291.	3.2	140
13	Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. ELife, 2015, 4, e07811.	6.0	137
14	The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant Journal, 2003, 36, 918-930.	5.7	115
15	Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development (Cambridge), 2007, 134, 1045-1050.	2.5	113
16	Co-ordination of developmental processes by small RNAs during leaf development. Journal of Experimental Botany, 2010, 61, 1277-1291.	4.8	83
17	Separable roles of UFO during floral development revealed by conditional restoration of gene function. Development (Cambridge), 2003, 130, 785-796.	2.5	76
18	A conserved role for <i><scp>CUP</scp>â€<scp>SHAPED COTYLEDON</scp></i> genes during ovule development. Plant Journal, 2015, 83, 732-742.	5.7	70

#	Article	IF	Citations
19	A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant Journal, 1999, 18, 131-139.	5.7	69
20	The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in <i>Arabidopsis</i> . Development (Cambridge), 2011, 138, 4733-4741.	2.5	68
21	Alternate wiring of a <i>KNOXI</i> genetic network underlies differences in leaf development of <i>A. thaliana</i> and <i>C. hirsuta</i> Genes and Development, 2015, 29, 2391-2404.	5.9	68
22	Cell Differentiation and Organ Initiation at the Shoot Apical Meristem. Plant Molecular Biology, 2006, 60, 811-826.	3.9	63
23	Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development (Cambridge), 2018, 145, .	2.5	61
24	Leaf development: what it needs to be complex. Current Opinion in Plant Biology, 2010, 13, 75-82.	7.1	60
25	Multiscale quantification of morphodynamics: MorphoLeaf, software for 2-D shape analysis. Development (Cambridge), 2016, 143, 3417-28.	2.5	47
26	Leaving the meristem behind: The genetic and molecular control of leaf patterning and morphogenesis. Comptes Rendus - Biologies, 2010, 333, 350-360.	0.2	42
27	Divergent Expression Patterns of miR164 and CUP-SHAPED COTYLEDON Genes in Palms and Other Monocots: Implication for the Evolution of Meristem Function in Angiosperms. Molecular Biology and Evolution, 2011, 28, 1439-1454.	8.9	42
28	An <i><scp>APETALA</scp>3</i> homolog controls both petal identity and floral meristem patterning in <i><scp>N</scp>igella damascena </i> <scp>L</scp> . (<scp>R</scp> anunculaceae). Plant Journal, 2013, 76, 223-235.	5.7	36
29	Dissecting the pathways coordinating patterning and growth by plant boundary domains. PLoS Genetics, 2019, 15, e1007913.	3.5	36
30	Apparition of the NAC Transcription Factors Predates the Emergence of Land Plants. Molecular Plant, 2016, 9, 1345-1348.	8.3	32
31	Mangroves in the Leaves: Anatomy, Physiology, and Immunity of Epithemal Hydathodes. Annual Review of Phytopathology, 2019, 57, 91-116.	7.8	28
32	The alc-GR System. A Modified alc Gene Switch Designed for Use in Plant Tissue Culture. Plant Physiology, 2005, 138, 1259-1267.	4.8	27
33	A mutation affecting etiolation and cell elongation in Nicotiana plumbaginifolia causes abnormal division plane alignment and pattern formation in the root meristem+. Plant Journal, 1995, 7, 785-796.	5.7	25
34	Cells and domains: Two views of the shoot meristem in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36, 33-45.	5.8	21
35	GDP-L-fucose is required for boundary definition in plants. Journal of Experimental Botany, 2017, 68, 5801-5811.	4.8	21
36	Combinations of Mutations Sufficient to Alter Arabidopsis Leaf Dissection. Plants, 2013, 2, 230-247.	3.5	17

#	Article	IF	CITATIONS
37	CUC Transcription Factors: To the Meristem and Beyond. , 2016, , 229-247.		17
38	Cellular Parameters of the Shoot Apical Meristem in Arabidopsis. Plant Cell, 1998, 10, 1375.	6.6	15
39	Plant Development: Brassinosteroids Go Out of Bounds. Current Biology, 2013, 23, R152-R154.	3.9	14
40	Genetic basis of the "sleeping leaves―revealed. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11474-11475.	7.1	12
41	Meristem Initiation and de novo Stem Cell Formation. Frontiers in Plant Science, 2022, 13, 891228.	3.6	8
42	Phyllotaxis: In Search of the Golden Angle. Current Biology, 2011, 21, R502-R504.	3.9	6
43	Phyllotaxy. Plant Signaling and Behavior, 2007, 2, 293-295.	2.4	3
44	Heterogeneity and its multiscale integration in plant morphogenesis. Current Opinion in Plant Biology, 2018, 46, 18-24.	7.1	3
45	A cell wall-associated gene network shapes leaf boundary domains. Development (Cambridge), 2022, 149, .	2.5	3
46	Photocontrol of Axillary Bud Outgrowth by MicroRNAs: Current State-of-the-Art and Novel Perspectives Gained From the Rosebush Model. Frontiers in Plant Science, 2021, 12, 770363.	3.6	2
47	Shaping the meristem by mechanical forces. F1000 Biology Reports, 2009, 1, 45.	4.0	1
48	How to dissect a leaf: A role for the NAM/CUC3 genes and the microRNA miR164. Comparative Biochemistry and Physiology Part A, Molecular & Entry Integrative Physiology, 2009, 153, S174.	1.8	0
49	Surface Parameterization and Registration for Statistical Multiscale Atlasing of Organ Development. , 2019, , .		0