Catherine A Blish

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/931571/publications.pdf

Version: 2024-02-01

101543 45317 13,787 90 36 citations h-index papers

g-index 130 130 130 19353 docs citations times ranked citing authors all docs

90

#	Article	IF	CITATIONS
1	SARS-CoV-2 RNAemia Predicts Clinical Deterioration and Extrapulmonary Complications from COVID-19. Clinical Infectious Diseases, 2022, 74, 218-226.	5.8	51
2	Stereotypic Expansion of T Regulatory and Th17 Cells during Infancy Is Disrupted by HIV Exposure and Gut Epithelial Damage. Journal of Immunology, 2022, 208, 27-37.	0.8	6
3	Innovative vaccine approaches—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	3.8	5
4	Deep Phenotypic Analysis of Blood and Lymphoid T and NK Cells From HIV+ Controllers and ART-Suppressed Individuals. Frontiers in Immunology, 2022, 13, 803417.	4.8	12
5	Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Science Translational Medicine, 2022, 14, eabn7842.	12.4	92
6	The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters. PLoS Pathogens, 2022, 18, e1009914.	4.7	26
7	Natural Killer Cell Receptors and Ligands Are Associated With Markers of HIV-1 Persistence in Chronically Infected ART Suppressed Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 757846.	3.9	5
8	Gastrointestinal Perforation in a Patient With Antinuclear Matrix Protein 2 Antibody–Positive Dermatomyositis. Arthritis Care and Research, 2022, 74, 1409-1415.	3.4	1
9	The immunology and immunopathology of COVID-19. Science, 2022, 375, 1122-1127.	12.6	434
10	Association Between SARS-CoV-2 RNAemia and Postacute Sequelae of COVID-19. Open Forum Infectious Diseases, 2022, 9, ofab646.	0.9	14
11	Facile discovery of surrogate cytokine agonists. Cell, 2022, 185, 1414-1430.e19.	28.9	33
12	TNF-α+ CD4+ TÂcells dominate the SARS-CoV-2 specific T cell response in COVID-19 outpatients and are associated with durable antibodies. Cell Reports Medicine, 2022, 3, 100640.	6.5	15
13	Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro. Nature Communications, 2022, 13, 2766.	12.8	20
14	Anti-nucleocapsid antibody levels and pulmonary comorbid conditions are linked to post–COVID-19 syndrome. JCI Insight, 2022, 7, .	5.0	18
15	Clinical characteristics associated with COVID-19 severity in California. Journal of Clinical and Translational Science, 2021, 5, e3.	0.6	26
16	Proinflammatory IgG Fc structures in patients with severe COVID-19. Nature Immunology, 2021, 22, 67-73.	14.5	239
17	Safety of ACE-I and ARB medications in COVID-19: A retrospective cohort study of inpatients and outpatients in California. Journal of Clinical and Translational Science, 2021, 5, e8.	0.6	5
18	CytoGLMM: conditional differential analysis for flow and mass cytometry experiments. BMC Bioinformatics, 2021, 22, 137.	2.6	14

#	Article	IF	CITATIONS
19	Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nature Communications, 2021, 12, 1967.	12.8	107
20	Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS Central Science, 2021, 7, 650-657.	11.3	39
21	Integrated analysis of multimodal single-cell data. Cell, 2021, 184, 3573-3587.e29.	28.9	5,912
22	SARS-CoV-2 Subgenomic RNA Kinetics in Longitudinal Clinical Samples. Open Forum Infectious Diseases, 2021, 8, ofab310.	0.9	24
23	Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. Journal of Experimental Medicine, 2021, 218, .	8.5	139
24	Use of Outpatient-Derived COVID-19 Convalescent Plasma in COVID-19 Patients Before Seroconversion. Frontiers in Immunology, 2021, 12, 739037.	4.8	3
25	The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation. PLoS Pathogens, 2021, 17, e1009412.	4.7	27
26	A historical perspective on ACE2 in the COVID-19 era. Journal of Human Hypertension, 2021, 35, 935-939.	2.2	41
27	Enhancing natural killer cell function with gp41-targeting bispecific antibodies to combat HIV infection. Aids, 2020, 34, 1313-1323.	2.2	12
28	Charge-altering releasable transporters enable phenotypic manipulation of natural killer cells for cancer immunotherapy. Blood Advances, 2020, 4, 4244-4255.	5.2	32
29	Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host and Microbe, 2020, 28, 516-525.e5.	11.0	219
30	Natural killer cell phenotype is altered in HIV-exposed seronegative women. PLoS ONE, 2020, 15, e0238347.	2.5	18
31	Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature, 2020, 588, 670-675.	27.8	273
32	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	11.9	404
33	Treated HIV Infection Alters Phenotype but Not HIV-Specific Function of Peripheral Blood Natural Killer Cells. Frontiers in Immunology, 2020, 11, 829.	4.8	10
34	TIGIT is upregulated by HIV-1 infection and marks a highly functional adaptive and mature subset of natural killer cells. Aids, 2020, 34, 801-813.	2.2	40
35	A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature Medicine, 2020, 26, 1070-1076.	30.7	1,300
36	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	14.3	20

#	Article	IF	Citations
37	Identification of the first cases of complete CD16A deficiency: Association with persistent EBV infection. Journal of Allergy and Clinical Immunology, 2020, 145, 1288-1292.	2.9	10
38	Characterization of the Impact of Daclizumab Beta on Circulating Natural Killer Cells by Mass Cytometry. Frontiers in Immunology, 2020, 11, 714.	4.8	10
39	Influenza-Induced Interferon Lambda Response Is Associated With Longer Time to Delivery Among Pregnant Kenyan Women. Frontiers in Immunology, 2020, 11, 452.	4.8	1
40	The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19?. Cell Host and Microbe, 2020, 27, 863-869.	11.0	192
41	Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight, 2020, 5, .	5.0	196
42	Profiling of the Human Natural Killer Cell Receptor-Ligand Repertoire. Journal of Visualized Experiments, 2020, , .	0.3	6
43	Mass Cytometry Analysis of the NK Cell Receptor–Ligand Repertoire Reveals Unique Differences between Dengue-Infected Children and Adults. ImmunoHorizons, 2020, 4, 634-647.	1.8	7
44	HLA Upregulation During Dengue Virus Infection Suppresses the Natural Killer Cell Response. Frontiers in Cellular and Infection Microbiology, 2019, 9, 268.	3.9	12
45	Pregnancy-Induced Alterations in NK Cell Phenotype and Function. Frontiers in Immunology, 2019, 10, 2469.	4.8	36
46	Human natural killer cells mediate adaptive immunity to viral antigens. Science Immunology, 2019, 4, .	11.9	135
47	A novel human <i>IL2RB</i> mutation results in T and NK cell–driven immune dysregulation. Journal of Experimental Medicine, 2019, 216, 1255-1267.	8.5	64
48	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
49	Diversification of human NK cells: Lessons from deep profiling. Journal of Leukocyte Biology, 2018, 103, 629-641.	3.3	56
50	Maintaining a Robust Pipeline of Future Physician-Scientists. Journal of Infectious Diseases, 2018, 218, S40-S43.	4.0	18
51	Differential Induction of IFN- $\hat{l}\pm$ and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN- \hat{l}^3 Response to Influenza A Viruses. Journal of Immunology, 2018, 201, 2117-2131.	0.8	42
52	Mass Cytometry Analytical Approaches Reveal Cytokineâ€Induced Changes in Natural Killer Cells. Cytometry Part B - Clinical Cytometry, 2017, 92, 57-67.	1.5	40
53	Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9626-E9634.	7.1	138
54	Redefining Memory: Building the Case for Adaptive NK Cells. Journal of Virology, 2017, 91, .	3.4	89

#	Article	IF	Citations
55	The newborn human NK cell repertoire is phenotypically formed but functionally reduced. Cytometry Part B - Clinical Cytometry, 2017, 92, 33-41.	1.5	35
56	The natural killer cell response to West Nile virus in young and old individuals with or without a prior history of infection. PLoS ONE, 2017, 12, e0172625.	2.5	26
57	Human NK Cell Diversity in Viral Infection: Ramifications of Ramification. Frontiers in Immunology, 2016, 7, 66.	4.8	25
58	NKG2A-Expressing Natural Killer Cells Dominate the Response to Autologous Lymphoblastoid Cells Infected with Epstein–Barr Virus. Frontiers in Immunology, 2016, 7, 607.	4.8	46
59	CyTOF: Single Cell Mass Cytometry for Evaluation of Complex Innate Cellular Phenotypes. , 2016, , 27-39.		4
60	Application of Mass Cytometry (CyTOF) for Functional and Phenotypic Analysis of Natural Killer Cells. Methods in Molecular Biology, 2016, 1441, 13-26.	0.9	61
61	Zika Virus Infection Induces Cranial Neural Crest Cells to Produce Cytokines at Levels Detrimental for Neurogenesis. Cell Host and Microbe, 2016, 20, 423-428.	11.0	113
62	Increased Proinflammatory Responses of Monocytes and Plasmacytoid Dendritic Cells to Influenza A Virus Infection During Pregnancy. Journal of Infectious Diseases, 2016, 214, 1666-1671.	4.0	57
63	Natural Killer Cell Diversity in Viral Infection: Why and How Much?. Pathogens and Immunity, 2016, 1, 165.	3.1	25
64	Immunogenicity and Clinical Efficacy of Influenza Vaccination in Pregnancy. Frontiers in Immunology, 2015, 6, 289.	4.8	41
65	Pregnancy Does Not Attenuate the Antibody or Plasmablast Response to Inactivated Influenza Vaccine. Journal of Infectious Diseases, 2015, 212, 861-870.	4.0	49
66	Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Science Translational Medicine, 2015, 7, 297ra115.	12.4	177
67	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	27.8	507
68	Delayed BCG Vaccinationâ€"Time to Take a Shot. Journal of Infectious Diseases, 2015, 211, 335-337.	4.0	5
69	Systemic Cytokine Levels Show Limited Correlation With Risk of HIV-1 Acquisition. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 66, 135-139.	2.1	4
70	Association between Cellular Immune Activation, Target Cell Frequency, and Risk of Human Immunodeficiency Virus Type 1 Superinfection. Journal of Virology, 2014, 88, 5894-5899.	3.4	5
71	Coordinated Regulation of NK Receptor Expression in the Maturing Human Immune System. Journal of Immunology, 2014, 193, 4871-4879.	0.8	75
72	Association between Latent Proviral Characteristics and Immune Activation in Antiretrovirus-Treated Human Immunodeficiency Virus Type 1-Infected Adults. Journal of Virology, 2014, 88, 8629-8639.	3.4	6

#	Article	IF	CITATIONS
73	Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14506-14511.	7.1	95
74	Genetic and Environmental Determinants of Human NK Cell Diversity Revealed by Mass Cytometry. Science Translational Medicine, 2013, 5, 208ra145.	12.4	491
75	Antibody-Dependent Cell-Mediated Virus Inhibition Antibody Activity Does Not Correlate With Risk of HIV-1 Superinfection. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 63, 31-33.	2.1	20
76	The impact of HIV-1 infection and exposure on natural killer (NK) cell phenotype in Kenyan infants during the first year of life. Frontiers in Immunology, 2012, 3, 399.	4.8	39
77	HIV-1 Transmission Goes Retro (Steps Back). Journal of Infectious Diseases, 2012, 206, 1336-1338.	4.0	0
78	Cellular immune responses and susceptibility to HIV-1 superinfection. Aids, 2012, 26, 643-646.	2.2	12
79	Genital Inflammation Predicts HIV-1 Shedding Independent of Plasma Viral Load and Systemic Inflammation. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 61, 436-440.	2.1	36
80	Hormonal Contraception and HIVâ€1 Transmission. American Journal of Reproductive Immunology, 2011, 65, 302-307.	1.2	60
81	The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology, 2011, 421, 235-244.	2.4	19
82	The Breadth and Potency of Passively Acquired Human Immunodeficiency Virus Type 1-Specific Neutralizing Antibodies Do Not Correlate with the Risk of Infant Infection. Journal of Virology, 2011, 85, 5252-5261.	3.4	50
83	Comparative Immunogenicity of Subtype A Human Immunodeficiency Virus Type 1 Envelope Exhibiting Differential Exposure of Conserved Neutralization Epitopes. Journal of Virology, 2010, 84, 2573-2584.	3.4	21
84	Changes in Plasma Cytokines after Treatment of <i>Ascaris lumbricoides </i> Infection in Individuals with HIV†Infection. Journal of Infectious Diseases, 2010, 201, 1816-1821.	4.0	29
85	Cross-Subtype Neutralization Sensitivity despite Monoclonal Antibody Resistance among Early Subtype A, C, and D Envelope Variants of Human Immunodeficiency Virus Type 1. Journal of Virology, 2009, 83, 7783-7788.	3.4	50
86	Breadth of Neutralizing Antibody Response to Human Immunodeficiency Virus Type 1 Is Affected by Factors Early in Infection but Does Not Influence Disease Progression. Journal of Virology, 2009, 83, 10269-10274.	3.4	165
87	Human Immunodeficiency Virus Type 1 Superinfection Occurs despite Relatively Robust Neutralizing Antibody Responses. Journal of Virology, 2008, 82, 12094-12103.	3.4	82
88	Enhancing Exposure of HIV-1 Neutralization Epitopes through Mutations in gp41. PLoS Medicine, 2008, 5, e9.	8.4	85
89	HIV-1 subtype A envelope variants from early in infection have variable sensitivity to neutralization and to inhibitors of viral entry. Aids, 2007, 21, 693-702.	2.2	66
90	Transmission of HIV-1 in the Face of Neutralizing Antibodies. Current HIV Research, 2007, 5, 578-587.	0.5	33