
Heinrich Reichert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9315232/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Development, 2008, 3, 5.	2.4	340
2	The <i>brain tumor</i> gene negatively regulates neural progenitor cell proliferation in the larval central brain of <i>Drosophila</i> . Development (Cambridge), 2006, 133, 2639-2648.	2.5	236
3	Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron, 1995, 15, 769-778.	8.1	188
4	An urbilaterian origin of the tripartite brain: developmental genetic insights from <i>Drosophila</i> . Development (Cambridge), 2003, 130, 2365-2373.	2.5	182
5	SWI/SNF Complex Prevents Lineage Reversion and Induces Temporal Patterning in Neural Stem Cells. Cell, 2014, 156, 1259-1273.	28.9	137
6	Conserved genetic programs in insect and mammalian brain development. BioEssays, 1999, 21, 677-684.	2.5	125
7	FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal. Cell Reports, 2012, 2, 407-418.	6.4	122
8	Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Development, 2009, 4, 44.	2.4	101
9	The zebrafish brain: a neuroanatomical comparison with the goldfish. Anatomy and Embryology, 1996, 194, 187-203.	1.5	88
10	Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1533-1544.	4.0	86
11	Building a brain: developmental insights in insects. Trends in Neurosciences, 1997, 20, 258-264.	8.6	84
12	Gliogenesis in <i>Drosophila</i> : genome-wide analysis of downstream genes of <i>glial cells missing</i> in the embryonic nervous system. Development (Cambridge), 2002, 129, 3295-3309.	2.5	65
13	Conserved usage of gap and homeotic genes in patterning the CNS. Current Opinion in Neurobiology, 1999, 9, 589-595.	4.2	62
14	Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain. Gene Expression Patterns, 2007, 7, 584-595.	0.8	57
15	Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila. Development (Cambridge), 2007, 134, 1091-1099.	2.5	55
16	Lineage-specific cell death in postembryonic brain development of <i>Drosophila</i> . Development (Cambridge), 2009, 136, 3433-3442.	2.5	54
17	Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Developmental Biology, 2011, 356, 553-565.	2.0	54
18	Control of neural stem cell self-renewal and differentiation in Drosophila. Cell and Tissue Research, 2015, 359, 33-45.	2.9	48

HEINRICH REICHERT

#	Article	IF	CITATIONS
19	Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development. Biology Letters, 2009, 5, 112-116.	2.3	47
20	A tripartite organization of the urbilaterian brain: Developmental genetic evidence from Drosophila. Brain Research Bulletin, 2005, 66, 491-494.	3.0	46
21	Expression, regulation and function of the homeobox gene empty spiracles in brain and ventral nerve cord development of Drosophila. Mechanisms of Development, 2000, 90, 143-153.	1.7	43
22	The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Structure and Development, 2003, 32, 141-156.	1.4	40
23	Wingless and Hedgehog signaling pathways regulate orthodenticle and eyes absent during ocelli development in Drosophila. Developmental Biology, 2009, 329, 104-115.	2.0	40
24	OTD/OTX2 functional equivalence depends on 5′ and 3′ UTR-mediated control ofOtx2mRNA for nucleo-cytoplasmic export and epiblast-restricted translation. Development (Cambridge), 2001, 128, 4801-4813.	2.5	39
25	Drosophila Neural Stem Cells: Cell Cycle Control of Self-Renewal, Differentiation, and Termination in Brain Development. Results and Problems in Cell Differentiation, 2011, 53, 529-546.	0.7	36
26	Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain. Neural Development, 2012, 7, 3.	2.4	35
27	Structure and development of the subesophageal zone of the <i>Drosophila</i> brain. II. Sensory compartments. Journal of Comparative Neurology, 2018, 526, 33-58.	1.6	34
28	Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics, 2004, 5, 24.	2.8	33
29	Anteroposterior Regionalization of the Brain: Genetic and Comparative Aspects. Advances in Experimental Medicine and Biology, 2008, 628, 32-41.	1.6	31
30	A multipotent transit-amplifying neuroblast lineage in the central brain gives rise to optic lobe glial cells in Drosophila. Developmental Biology, 2013, 379, 182-194.	2.0	31
31	Morphogenetic reorganization of the brain during embryogenesis in the grasshopper. Journal of Comparative Neurology, 1995, 361, 429-440.	1.6	30
32	Identification of candidate downstream genes for the homeodomain transcription factor Labial in Drosophila through oligonucleotide-array transcript imaging. Genome Biology, 2001, 2, research0015.1.	9.6	30
33	Identification and analysis of a glutamatergic local interneuron lineage in the adult Drosophila olfactory system. Neural Systems & Circuits, 2011, 1, 4.	1.8	30
34	Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila. Neural Development, 2013, 8, 6.	2.4	30
35	Structure and development of the subesophageal zone of the <i>Drosophila</i> brain. I. Segmental architecture, compartmentalization, and lineage anatomy. Journal of Comparative Neurology, 2018, 526, 6-32.	1.6	29
36	Embryonic brain tract formation in Drosophila melanogaster. Development Genes and Evolution, 1997, 206, 536-540.	0.9	26

HEINRICH REICHERT

#	Article	IF	CITATIONS
37	Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster. Development Genes and Evolution, 2011, 221, 281-296.	0.9	26
38	Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Developmental Biology, 2014, 390, 102-115.	2.0	26
39	The Genetics of Embryonic Brain Development inDrosophila. Molecular and Cellular Neurosciences, 1998, 12, 194-205.	2.2	25
40	The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Development Genes and Evolution, 2013, 223, 149-157.	0.9	25
41	Conserved genetic mechanisms for embryonic brain patterning. International Journal of Developmental Biology, 2002, 46, 81-7.	0.6	25
42	The egghead gene is required for compartmentalization in Drosophila optic lobe development. Developmental Biology, 2005, 287, 61-73.	2.0	24
43	Evolutionary conservation of otd/Otx2 transcription factor action: a genome-wide microarray analysis in Drosophila. Genome Biology, 2002, 3, research0015.1.	9.6	23
44	Hox gene cross-regulatory interactions in the embryonic brain of Drosophila. Mechanisms of Development, 2004, 121, 527-536.	1.7	20
45	Conserved roles of <i>ems/Emx</i> and <i>otd/Otx</i> genes in olfactory and visual system development in <i>Drosophila</i> and mouse. Open Biology, 2013, 3, 120177.	3.6	20
46	The wingless gene is required for embryonic brain development in Drosophila. Development Genes and Evolution, 1998, 208, 37-45.	0.9	18
47	The columnar gene vnd is required for tritocerebral neuromere formation during embryonic brain development of Drosophila. Development (Cambridge), 2006, 133, 4331-4339.	2.5	18
48	The <i>labial</i> gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the <i>Drosophila</i> brain. Biology Open, 2012, 1, 1006-1015.	1.2	18
49	Embryonic development of muscle patterns in the body wall of the grasshopper. Roux's Archives of Developmental Biology, 1992, 201, 301-311.	1.2	16
50	Genetic transformation of structural and functional circuitry rewires the Drosophila brain. ELife, 2014, 3, .	6.0	16
51	<i>Drosophila</i> Neural Stem Cells in Brain Development and Tumor Formation. Journal of Neurogenetics, 2014, 28, 181-189.	1.4	15
52	Organization of a midline proliferative cluster in the embryonic brain of the grasshopper. Roux's Archives of Developmental Biology, 1995, 205, 45-53.	1.2	14
53	The splicing co-factor Barricade/Tat-SF1, is required for cell cycle and lineage progression in <i>Drosophila</i> neural stem cells. Development (Cambridge), 2017, 144, 3932-3945.	2.5	14
54	Analysis of neural stem cell self-renewal and differentiation by transgenic RNAi in Drosophila. Archives of Biochemistry and Biophysics, 2013, 534, 38-43.	3.0	11

HEINRICH REICHERT

#	Article	IF	CITATIONS
55	Hox Genes and Brain Development in Drosophila. Advances in Experimental Medicine and Biology, 2010, 689, 145-153.	1.6	11
56	Early embryonic expression of a 60-kD glycoprotein in the developing nervous system of the lobster. Journal of Comparative Neurology, 1994, 346, 572-582.	1.6	10
57	Notch Regulates the Generation of Diverse Cell Types From the Lateral Lineage of <i>Drosophila</i> Antennal Lobe. Journal of Neurogenetics, 2010, 24, 42-53.	1.4	10
58	Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development. Developmental Biology, 2010, 340, 125-133.	2.0	8
59	Embryonic expression of muscle-specific antigens in the grasshopper Schistocerca gregaria. Roux's Archives of Developmental Biology, 1994, 204, 141-145.	1.2	5
60	Expression and function of the LIM homeodomain protein Apterous during embryonic brain development of Drosophila. Development Genes and Evolution, 2001, 211, 545-554.	0.9	4
61	Antibody block of a neural-tissue-specific glycoconjugate perturbs growth cone guidance of an identified interneuron in the grasshopper. Roux's Archives of Developmental Biology, 1994, 204, 75-78.	1.2	3
62	Maintaining neural stem cell identity in the brain. ELife, 2014, 3, .	6.0	1
63	Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster. Journal of Biosciences, 2014, 39, 595-603.	1.1	0
64	How the humble insect brain became a powerful experimental model system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 879-889.	1.6	0
65	Antibody block of a neural-tissue-specific glycoconjugate perturbs growth cone guidance of an identified interneuron in the grasshopper. Roux's Archives of Developmental Biology, 1994, 204, 75-78.	1.2	0