Arturo Espinosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9313106/publications.pdf Version: 2024-02-01

Δρτιφο Εςρινοςλ

#	Article	IF	CITATIONS
1	Synthesis of azadiphosphiridine complexes. Theoretical studies on ring formation, the P-to-P′ metal shift and the resulting nitrogen geometry. Dalton Transactions, 2022, 51, 3275-3279.	3.3	2
2	CHNO isomers and derivatives – a computational overview. New Journal of Chemistry, 2022, 46, 5771-5778.	2.8	2
3	Accurate Ring Strain Energies of Unsaturated Three-Membered Heterocycles with One Group 13–16 Element. Inorganic Chemistry, 2022, 61, 6459-6468.	4.0	13
4	1,2σ3λ3-Oxaphosphetanes and Their P-Chalcogenides—A Combined Experimental and Theoretical Study. Molecules, 2022, 27, 3345.	3.8	1
5	Regioselective N- versus P-Deprotonation of Aminophosphane Tungsten(0) Complexes. Organics, 2022, 3, 161-172.	1.3	0
6	A case study on the conversion of Li/Cl phosphinidenoid into phosphinidene complexes. Dalton Transactions, 2021, 50, 739-745.	3.3	9
7	M/X Phosphinidenoid Metal Complex Chemistry. Accounts of Chemical Research, 2021, 54, 1754-1765.	15.6	12
8	Analysis of Nonâ€innocence of Phosphaquinodimethane Ligands when Charge and Aromaticity Come into Play. Chemistry - A European Journal, 2021, 27, 9350-9359.	3.3	4
9	Chemistry of oxaphosphirane complexes. Coordination Chemistry Reviews, 2021, 437, 213818.	18.8	3
10	Toward a 1,4-Diphosphinine-Based Molecular CPS-Ternary Compound. Inorganic Chemistry, 2021, 60, 13029-13040.	4.0	3
11	Azaphosphiridines: challenges and perspectives. Dalton Transactions, 2021, 50, 7324-7336.	3.3	1
12	Electronic structure and bridge geometric distortion in push–pull imine-bridged triads. A theoretical study. New Journal of Chemistry, 2021, 45, 4472-4480.	2.8	1
13	Synthesis of the First Oxaphosphirane Iron Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 252-257.	2.0	4
14	Between Oxirane and Phosphirane: The Springâ€loaded Oxaphosphirane Ring. European Journal of Inorganic Chemistry, 2021, 2021, 348-353.	2.0	11
15	P-Functionalized tetrathiafulvalenes from 1,3-dithiole-2-thiones?. New Journal of Chemistry, 2020, 44, 17122-17128.	2.8	6
16	Terminal Phosphinidene Complex Adducts with Neutral and Anionic O-Donors and Halides and the Search for a Differentiating Bonding Descriptor. Inorganic Chemistry, 2020, 59, 12829-12841.	4.0	22
17	Accurate Ring Strain Energy Calculations on Saturated Three-Membered Heterocycles with One Group 13–16 Element. Inorganic Chemistry, 2020, 59, 11503-11513.	4.0	20
18	1,2-Insertion reactions of alkynes into Ge–C bonds of arylbromogermylene. Dalton Transactions, 2020, 49, 7189-7196.	3.3	7

#	Article	IF	CITATIONS
19	Benchmarking the inversion barriers in σ ³ î» ³ -phosphorus compounds: a computational study. New Journal of Chemistry, 2020, 44, 8763-8770.	2.8	18
20	A synthetic equivalent for unknown 1,3-zwitterions? – A K/OR phosphinidenoid complex with an additional Si–Cl function. Chemical Communications, 2020, 56, 3899-3902.	4.1	6
21	1,2-Thiaphosphetanes: The Quest for Wittig-Type Ring Cleavage, Rearrangement, and Sulfur Atom Transfer. Inorganic Chemistry, 2020, 59, 3110-3117.	4.0	6
22	Rigid π-Extended Boron Difluoride Complex with Mega-Stokes Shift for Bioimaging. Organic Letters, 2020, 22, 3356-3360.	4.6	37
23	Competitive or sequential reaction of an electrophilic terminal phosphinidene metal(0) complex with allyl halides? [2+1]-cycloaddition <i>vs.</i> C–X bond insertion. Chemical Communications, 2019, 55, 9987-9990.	4.1	3
24	N-Heterocyclic Carbene-Stabilized Germanium and Tin Analogues of Heavier Nitriles: Synthesis, Reactivity, and Catalytic Application. Journal of the American Chemical Society, 2019, 141, 14576-14580.	13.7	60
25	Access and unprecedented reaction pathways of Li/Cl phosphinidenoid iron(0) complexes. Dalton Transactions, 2019, 48, 339-345.	3.3	9
26	Synthesis of free and ligated 1,2-thiaphosphetanes – expanding the pool of strained P-ligands. Chemical Communications, 2019, 55, 1615-1618.	4.1	6
27	Access to 1,1′â€Bifunctional Phosphane Iron(0) Complexes via P–N Bondâ€Forming Reactions and Selective Pâ€Functionalizations. European Journal of Inorganic Chemistry, 2019, 2019, 1604-1611.	2.0	5
28	Epoxide-like Chemistry: 1,2-Bifunctional P-Ligands via Stereo- and Regioselective Ring Opening of an Oxaphosphirane Complex. Organometallics, 2018, 37, 1331-1336.	2.3	9
29	"Low-coordinate―1,2-oxaphosphetanes – a new opportunity in coordination and main group chemistry. Chemical Communications, 2018, 54, 7123-7126.	4.1	16
30	Unconventional ionic ring-deconstruction pathways of a three-membered heterocycle. Chemical Communications, 2018, 54, 14013-14016.	4.1	5
31	Quantum Chemical Calculations on CHOP Derivatives—Spanning the Chemical Space of Phosphinidenes, Phosphaketenes, Oxaphosphirenes, and COPâ^'Isomers. Molecules, 2018, 23, 3341.	3.8	13
32	Effects of diminished steric protection at phosphorus on stability and reactivity of oxaphosphirane complexes. Dalton Transactions, 2018, 47, 9347-9354.	3.3	12
33	On the Mechanism of Trimethylphosphine-Mediated Reductive Dimerization of Ketones. Inorganic Chemistry, 2018, 57, 8058-8064.	4.0	18
34	Fulvenization as characteristic geometric distortion in electron deficient ferrocenes. Tetrahedron, 2017, 73, 952-956.	1.9	3
35	Coordination of N ₂ and Other Small Molecules to the Phosphorus Centre of RPW(CO) ₅ : A Theoretical Study on the Janus Facets of the Stabilization/Activation Problem. Chemistry - A European Journal, 2017, 23, 8632-8643.	3.3	11
36	The structure of Cu(II) and Hg(II) complexes of bispyrenyl azine revisited. Journal of Molecular Modeling, 2017, 23, 124.	1.8	0

#	Article	IF	CITATIONS
37	Cubane-like tetranuclear Cu(<scp>ii</scp>) complexes bearing a Cu ₄ O ₄ core: crystal structure, magnetic properties, DFT calculations and phenoxazinone synthase like activity. Dalton Transactions, 2017, 46, 1249-1259.	3.3	69
38	A Computational Study on the Stability of Oxaphosphirane Rings towards Closed-Shell Valence Isomerization. European Journal of Inorganic Chemistry, 2017, 2017, 2707-2712.	2.0	6
39	C _i -Symmetry, [2 × 2] grid, square copper complex with the N ⁴ ,N ⁵ -bis(4-fluorophenyl)-1H-imidazole-4,5-dicarboxamide ligand: structure, catecholase activity, magnetic properties and DFT calculations. New Journal of Chemistry, 2017, 41, 11750-11758.	2.8	7
40	Frontispiece: Coordination of N ₂ and Other Small Molecules to the Phosphorus Centre of RPW(CO) ₅ : A Theoretical Study on the Janus Facets of the Stabilization/Activation Problem. Chemistry - A European Journal, 2017, 23, .	3.3	0
41	Comparative Computational Study on the Reaction of Chloroacetone with Trimethylphosphite: Perkow versus Michaelis–Arbuzov Reaction Paths. Journal of Physical Chemistry A, 2017, 121, 6517-6522.	2.5	12
42	Mexican Sign Language Alphanumerical Gestures Recognition using 3D Haar-like Features. IEEE Latin America Transactions, 2017, 15, 2000-2005.	1.6	16
43	Cycloaddition von Pâ€Câ€Einfachbindungen: Stereoselektive Bildung von Benzoâ€1,3,6,2â€trioxaphosphepinkomplexen über einen ditopischen Vanâ€derâ€Waalsâ€Komplex. Angewand Chemie, 2016, 128, 12885-12889.	1 t2. 0	3
44	Coordination chemistry of a low-coordinate non-metal element: the case of electrophilic terminal phosphinidene complexes. Dalton Transactions, 2016, 45, 13951-13956.	3.3	10
45	Cycloaddition of Pâ``C Single Bonds: Stereoselective Formation of Benzoâ€1,3,6,2â€trioxaphosphepine Complexes via a Ditopic van der Waals Complex. Angewandte Chemie - International Edition, 2016, 55, 12693-12697.	13.8	8
46	Reaction of a Stable Digermyne with Acetylenes: Synthesis of a 1,2-Digermabenzene and a 1,4-Digermabarrelene. Bulletin of the Chemical Society of Japan, 2016, 89, 1375-1384.	3.2	56
47	Thiaphosphiranes and Their Complexes: Systematic Study on Ring Strain and Ring Cleavage Reactions. Inorganic Chemistry, 2016, 55, 9611-9619.	4.0	19
48	Kinetic energy density per electron as quick insight into ring strain energies. Tetrahedron Letters, 2016, 57, 5616-5619.	1.4	14
49	Reactions of Li/Cl Phosphinidenoid Complexes with 1,3,4,5-Tetramethylimidazol-2-ylidene: A New Route to N-Heterocyclic Carbene Adducts of Terminal PhosphinÂidene Complexes and an Unprecedented Transformation of an Oxaphosphirane Complex. European Journal of Inorganic Chemistry, 2016, 2016, 685-690	2.0	21
50	Single Heteroatom Fine-Tuning of the Emissive Properties in Organoboron Complexes with 7-(Azaheteroaryl)indole Systems. Journal of Organic Chemistry, 2016, 81, 3296-3302.	3.2	38
51	Rearrangement and deoxygenation of 3,3-bis(2-pyridyl)oxaphosphirane complexes. Dalton Transactions, 2016, 45, 2085-2094.	3.3	18
52	CPh ₃ as a functional group in P-heterocyclic chemistry: elimination of HCPh ₃ in the reaction of P-CPh ₃ substituted Li/Cl phosphinidenoid complexes with Ph ₂ Cî€O. Dalton Transactions, 2016, 45, 2378-2385.	3.3	16
53	Synthesis, crystal structure and DFT calculations of bis(1,3-diazinane-2-thione-l̂°S)dicyanido disilver(I), [{Ag(Diaz)2}{Ag(CN)2}]. Polyhedron, 2016, 110, 299-304.	2.2	8
54	Stimuliâ€Responsive Frustrated Lewisâ€Pairâ€Type Reactivity of a Tungsten Iminoazaphosphiridine Complex. Chemistry - A European Journal, 2015, 21, 9650-9655.	3.3	20

#	Article	IF	CITATIONS
55	Unusual Mechanism for the Reaction of a Niobocene Hydride Complex with Activated Alkynes. Experimental and DFT Studies. Organometallics, 2015, 34, 2695-2698.	2.3	7
56	Unprecedented Ring–Ring Interconversion of N,P,C age Ligands. Chemistry - A European Journal, 2015, 21, 3727-3735.	3.3	17
57	Synthesis, crystal structure, theoretical calculations and antimicrobial properties of [Pt(tetramethylthiourea)4] [Pt(CN)4]·4H2O. Journal of Molecular Structure, 2015, 1085, 155-161.	3.6	6
58	Pyreneâ€Based Dyad and Triad Leading to a Reversible Chemical and Redox Optical and Magnetic Switch. Chemistry - A European Journal, 2015, 21, 5504-5509.	3.3	5
59	Formation of Transient and Stable 1,3-Dipole Complexes with P,S,C and S,P,C Ligand Skeletons. Organometallics, 2015, 34, 3103-3106.	2.3	15
60	Going for strain: synthesis of the first 3-imino-azaphosphiridine complexes and their conversion into oxaphosphirane complex valence isomers. Chemical Communications, 2015, 51, 3878-3881.	4.1	17
61	Electrochemical and Fluorescent Ferrocene-Imidazole-Based Dyads as Ion-Pair Receptors for Divalent Metal Cations and Oxoanions. Inorganic Chemistry, 2015, 54, 7461-7473.	4.0	40
62	Evidence for Terminal Phosphinidene Oxide Complexes in O,P,C-Cage Complex Formation: Rearrangement of Oxaphosphirane Complexes. Organometallics, 2015, 34, 2676-2682.	2.3	16
63	Synthesis, crystal structure, theoretical calculations, and electrochemical and biological studies of polymeric (N,N,N′,N′-tetramethylethylenediamine)bis(thiocyanato-κN)copper(II), [Cu(tmeda)(NCS)2]n. Polyhedron, 2015, 90, 252-257.	2.2	16
64	Novel C,N-Cyclometalated Benzimidazole Ruthenium(II) and Iridium(III) Complexes as Antitumor and Antiangiogenic Agents: A Structure–Activity Relationship Study. Journal of Medicinal Chemistry, 2015, 58, 7310-7327.	6.4	118
65	Tris(triazole) tripodal receptors as selective probes for citrate anion recognition and multichannel transition and heavy metal cation sensing. Organic and Biomolecular Chemistry, 2015, 13, 1429-1438.	2.8	24
66	Synthesis, theoretical calculations and antimicrobial studies of copper(I) complexes of cysteamine, cysteine and 2-mercaptonicotinic acid. Polyhedron, 2015, 85, 239-245.	2.2	13
67	Nitrogen-Rich Multinuclear Ferrocenophanes as Multichannel Chemosensor Molecules for Transition and Heavy-Metal Cations. Sensors, 2014, 14, 14339-14355.	3.8	13
68	Multifunctional Benzothiadiazoleâ€Based Small Molecules Displaying Solvatochromism and Sensing Properties toward Nitroarenes, Anions, and Cations. ChemistryOpen, 2014, 3, 242-249.	1.9	21
69	The 3-Acetyloxaphosphirane/1,3,2-Dioxaphosphol-4-ene Rearrangement. European Journal of Inorganic Chemistry, 2014, 2014, 1727-1734.	2.0	11
70	Theoretical Study on Novel Mixed Valence, Pâ€H Functional Pâ€Ligands, and Their Tautomerization. Heteroatom Chemistry, 2014, 25, 651-657.	0.7	3
71	Heteroleptic Ru(II) complexes containing aroyl hydrazone and 2,2′-bipyridyl: Synthesis, X-ray crystal structures, electrochemical and DFT studies. Polyhedron, 2014, 72, 115-121.	2.2	11
72	A Novel N,P,C Cage Complex Formed by Rearrangement of a Tricyclic Phosphirane Complex: On the Importance of Nonâ€covalent Interactions. Chemistry - A European Journal, 2014, 20, 7010-7016.	3.3	19

#	Article	IF	CITATIONS
73	Ferrocene–Triazole–Pyrene Triads as Multichannel Heteroditopic Recognition Receptors for Anions, Cations and Ion Pairs. Organometallics, 2014, 33, 2837-2852.	2.3	36
74	Ligand hierarchy on driving the crystal packing. Effect of supramolecular interactions on solid-state conformations adopted by saccharinate Pd(<scp>ii</scp>) complexes. CrystEngComm, 2014, 16, 7124.	2.6	5
75	Oxaphosphirane-Borane Complexes: Ring Strain and Migratory Insertion/Ring-Opening Reactions. Inorganic Chemistry, 2014, 53, 6132-6140.	4.0	25
76	Reaction of Li/Cl phosphinidenoid complexes with a phosphite substituted ketone: access to complexes with a novel mixed-valence polycyclic P,C-ligand system. Dalton Transactions, 2013, 42, 10510.	3.3	7
77	Synthesis and DFT calculations of spirooxaphosphirane complexes. Dalton Transactions, 2013, 42, 8897.	3.3	26
78	Coordination of CO to low-valent phosphorus centres and other related P–C bonding situations. A theoretical case study. Chemical Science, 2013, 4, 4309.	7.4	27
79	Bis(carbazolyl)ureas as Selective Receptors for the Recognition of Hydrogenpyrophosphate in Aqueous Media. Journal of Organic Chemistry, 2013, 78, 9725-9737.	3.2	29
80	The azaphosphiridine to terminal phosphinidene complex rearrangement – looking for non-covalent interactions of a highly reactive species. Chemical Communications, 2013, 49, 9648.	4.1	27
81	A densely decorated disubstituted ferrocene as an ion-pair recognition receptor. Chemical Communications, 2013, 49, 9633.	4.1	19
82	New steroidal 7-azaindole platinum(II) antitumor complexes. Journal of Inorganic Biochemistry, 2013, 128, 48-56.	3.5	24
83	Synthesis, Xâ€ray Crystal Structures, and Spectroscopic, Electrochemical, and Theoretical Studies of Mn ^{III} Complexes of Pyridoxal Schiff Bases with Two Diamines. European Journal of Inorganic Chemistry, 2013, 2013, 3249-3260.	2.0	9
84	A Multidimensional Undergraduate Experiment for Easy Solution and Surface Sensing of Mercury(II) and Copper(II) Metal Cations. Journal of Chemical Education, 2013, 90, 1057-1060.	2.3	14
85	Isomeric carbazolocarbazoles: synthesis, characterization and comparative study in Organic Field Effect Transistors. Journal of Materials Chemistry C, 2013, 1, 1959.	5.5	38
86	Novel C,N-chelate rhodium(iii) and iridium(iii) antitumor complexes incorporating a lipophilic steroidal conjugate and their interaction with DNA. Dalton Transactions, 2012, 41, 12847.	3.3	82
87	Synthesis and Reactions of the First Room Temperature Stable Li/Cl Phosphinidenoid Complex. Inorganic Chemistry, 2012, 51, 12343-12349.	4.0	47
88	Ion Pair Recognition Receptor Based on an Unsymmetrically 1,1′-Disubstituted Ferrocene–Triazole Derivative. Journal of Organic Chemistry, 2012, 77, 10083-10092.	3.2	53
89	Reactivity of terminal phosphinidene versus Li–Cl phosphinidenoid complexes in cycloaddition chemistry. Chemical Communications, 2012, 48, 5986.	4.1	27
90	Deoxygenation of carbon dioxide by electrophilic terminal phosphinidene complexes. Chemical Science, 2012, 3, 3526.	7.4	25

#	Article	IF	CITATIONS
91	Synthesis, Structural Characterization, and Sensing Properties of Clickable Unsymmetrical 1,1′-Disubstituted Ferrocene–Triazole Derivatives. Organometallics, 2012, 31, 2085-2096.	2.3	54
92	Single Electron Transfer-Mediated Selective <i>endo</i> and <i>exo</i> cyclic Bond Cleavage Processes in Azaphosphiridine Chromium(0) Complexes: A Computational Study. Inorganic Chemistry, 2012, 51, 7250-7256.	4.0	27
93	Indolocarbazole-Based Ligands for Ladder-Type Four-Coordinate Boron Complexes. Organic Letters, 2012, 14, 3360-3363.	4.6	69
94	Exocyclic Bond Cleavage in Oxaphosphirane Complexes?. Chemistry - A European Journal, 2012, 18, 13405-13411.	3.3	18
95	Highly selective mercury(ii) cations detection in mixed–aqueous media by a ferrocene-based fluorescent receptor. Dalton Transactions, 2012, 41, 4437.	3.3	27
96	Multichannel recognition of hydrogen sulphate anion by a Zn(II)–triazole–pyridine complex bearing a ferrocenyl pendant. Supramolecular Chemistry, 2012, 24, 826-832.	1.2	8
97	Multichannel HSO4â^' recognition promoted by a bound cation within a ferrocene-based ion pair receptor. Chemical Communications, 2012, 48, 6848.	4.1	49
98	Selective picomolar detection of mercury(<scp>ii</scp>) using optical sensors. Chemical Communications, 2011, 47, 1842-1844.	4.1	47
99	Aldimines generated from aza-Wittig reaction between bis(iminophosphoranes) derived from 1,1′-diazidoferrocene and aromatic or heteroaromatic aldehydes: electrochemical and optical behaviour towards metal cations. Dalton Transactions, 2011, 40, 12548.	3.3	21
100	Synthesis and Antiproliferative Activity of a C,N-Cycloplatinated(II) Complex with a Potentially Intercalative Anthraquinone Pendant. Inorganic Chemistry, 2011, 50, 2151-2158.	4.0	51
101	A Potent Ruthenium(II) Antitumor Complex Bearing a Lipophilic Levonorgestrel Group. Inorganic Chemistry, 2011, 50, 9164-9171.	4.0	74
102	Synthesis, Structural Charaterization, and Electrochemical and Optical Properties of Ferrocene–Triazole–Pyridine Triads. Inorganic Chemistry, 2011, 50, 8214-8224.	4.0	60
103	A Simple but Effective Dual Redox and Fluorescent Ion Pair Receptor Based on a Ferroceneâ^'Imidazopyrene Dyad. Organic Letters, 2011, 13, 2078-2081.	4.6	80
104	Computational Studies on Azaphosphiridines, or How to Effect Ringâ€Opening Processes through Selective Bond Activation. Chemistry - A European Journal, 2011, 17, 3166-3178.	3.3	46
105	Novel C,N-chelate platinum(II) antitumor complexes bearing a lipophilic ethisterone pendant. Journal of Inorganic Biochemistry, 2011, 105, 525-531.	3.5	49
106	A Selective Chromogenic and Fluorescent Molecular Probe for Yb ^{III} Based on a Bichromophoric Azadiene. European Journal of Inorganic Chemistry, 2010, 2010, 697-703.	2.0	11
107	Selective Metal ation Recognition by [2.2]Ferrocenophanes: The Cases of Zinc―and Lithiumâ€5ensing. Chemistry - A European Journal, 2010, 16, 1532-1542.	3.3	40
108	Solid state conformational preferences of the {M(μ-XPX)}2 core (X=O, S) in transition metal complexes. Journal of Molecular Structure, 2010, 968, 52-58.	3.6	3

#	Article	IF	CITATIONS
109	A new bis(pyrenyl)azadiene-based probe for the colorimetric and fluorescent sensing of Cu(II) and Hg(II). Tetrahedron, 2010, 66, 3662-3667.	1.9	76
110	Conformationally Modulated Intramolecular Electron Transfer Process in a Diaza[2,2]ferrocenophane. Inorganic Chemistry, 2010, 49, 3183-3191.	4.0	22
111	Unexpected transalkylation on 3-alkyl-2-alkylthio-1,3,4-thiadiazolium-5-thiolates: A computational and experimental mechanistic study. Organic and Biomolecular Chemistry, 2010, 8, 1623.	2.8	7
112	New 7-azaindole palladium and platinum complexes: crystal structures and theoretical calculations. In vitro anticancer activity of the platinum compounds. Dalton Transactions, 2010, 39, 3290.	3.3	63
113	A multifaceted ferrocene-benzobisimidazole derivative: fluorogenic probe for Pb2+ and Zn2+ cations and unconventional fluorescence behaviour towards Cu2+ metal cations. Dalton Transactions, 2010, 39, 5429.	3.3	29
114	Strong Evidence for an Unprecedented Borderline Case of Dissociation and Cycloaddition in Openâ€Shell 1,3â€Dipole Chemistry: Transient Nitrilium Phosphaneâ€Ylide Complex Radical Cations. European Journal of Inorganic Chemistry, 2009, 2009, 3226-3237.	2.0	27
115	A Selective Redox and Chromogenic Probe for Hg(II) in Aqueous Environment Based on a Ferroceneâ~'Azaquinoxaline Dyad. Inorganic Chemistry, 2009, 48, 11566-11575.	4.0	55
116	Mononuclear Ferrocenophane Structural Motifs with Two Thiourea Arms Acting as a Dual Binding Site for Anions and Cations. Inorganic Chemistry, 2009, 48, 1566-1576.	4.0	48
117	A new open benzodipyrrole-based chemosensor for hydrogenpyrophosphate anion in aqueous environment. Chemical Communications, 2009, , 7539.	4.1	33
118	A multiresponsive two-arm ferrocene-based chemosensor molecule for selective detection of mercury. Dalton Transactions, 2009, , 2121.	3.3	41
119	A redox-fluorescent molecular switch based on a heterobimetallic Ir(iii) complex with a ferrocenyl azaheterocycle as ancillary ligand. Dalton Transactions, 2009, , 3900.	3.3	22
120	N1-Coordination in palladium(II) and platinum(II) complexes with 9-methylhypoxanthine: crystal structures and theoretical calculations. Dalton Transactions, 2009, , 9637.	3.3	8
121	Orthogonal non-covalent binding forces in solid state supramolecular herringbone-shaped "interlocked dimers― Pseudopolymorphism in [(ppy)Pd(μ-pz)]2 (ppy = 2-(2-pyridyl)phenyl, pz = pyrazol-1-yl complex. Dalton Transactions, 2009, , 9625.) 3.3	29
122	Imidazole-Annelated Ferrocene Derivatives as Highly Selective and Sensitive Multichannel Chemical Probes for Pb(II) Cations. Journal of Organic Chemistry, 2009, 74, 4787-4796.	3.2	96
123	2-Aza-1,3-butadiene ligands for the selective detection of Hg2+ and Cu2+ ions. Arkivoc, 2009, 2010, 124-144.	0.5	1
124	Crystal Packing in Diâ€(μâ€OH)â€ <i>ortho</i> â€palladated Complexes – A DFT Insight into the Molecular Structure and Solidâ€State Interactions. European Journal of Inorganic Chemistry, 2008, 2008, 3687-3697.	2.0	7
125	Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron, 2008, 64, 2184-2191.	1.9	134
126	Ferrocene-Based Small Molecules for Dual-Channel Sensing of Heavy- and Transition-Metal Cations. Journal of Organic Chemistry, 2008, 73, 5489-5497.	3.2	67

#	Article	IF	CITATIONS
127	Triple Channel Sensing of Pb(II) Ions by a Simple Multiresponsive Ferrocene Receptor Having a 1-Deazapurine Backbone. Organic Letters, 2008, 10, 41-44.	4.6	95
128	Cation Coordination Induced Modulation of the Anion Sensing Properties of a Ferroceneâ^'Imidazophenanthroline Dyad: Multichannel Recognition from Phosphate-Related to Chloride Anions. Journal of Organic Chemistry, 2008, 73, 4034-4044.	3.2	161
129	Cation Coordination Induced Modulation of the Anion Sensing Properties of a Ferroceneâ^'Imidazophenanthroline Dyad: Mutichannel Recognition from Phosphate-Related to Chloride Anions. Journal of Organic Chemistry, 2008, 73, 9196-9196.	3.2	2
130	Multifunctional Ferroceneâ^'Ruthenocene Dyads Linked by Single or Double Aza-Containing Bridges Displaying Metalâ^'Metal Interactions and Cation Recognition Properties. Journal of Organic Chemistry, 2007, 72, 1161-1173.	3.2	22
131	Synthesis of Multifunctional Aza-Substituted Ruthenocene Derivatives Displaying Charge-Transfer Transitions and Selective Zn(II) Ions Sensing Properties. Organometallics, 2007, 26, 6234-6242.	2.3	25
132	Synthesis, Electrochemical, and Optical Properties of Linear Homo- and Heterometallocene Triads. Journal of Organic Chemistry, 2007, 72, 6924-6937.	3.2	21
133	A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn2+Ions. Organic Letters, 2007, 9, 2385-2388.	4.6	81
134	Electroactive Thiazole Derivatives Capped with Ferrocenyl Units Showing Charge-Transfer Transition and Selective Ion-Sensing Properties:  A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2007, 46, 825-838.	4.0	85
135	[3.3]Ferrocenophanes with Guanidine Bridging Units as Multisignalling Receptor Molecules for Selective Recognition of Anions, Cations, and Amino Acids. Chemistry - A European Journal, 2007, 13, 5742-5752.	3.3	77
136	Evidence for Ligandâ€Centered Reactivity of a 17e Radical Cationic 2 <i>H</i> â€Azaphosphirene Complex. European Journal of Inorganic Chemistry, 2007, 2007, 4669-4678.	2.0	15
137	Ferrocene-Based Ureas as Multisignaling Receptors for Anions. Journal of Organic Chemistry, 2006, 71, 4590-4598.	3.2	104
138	Heteroditopic ferrocene-based ureas as receptors for anions and cations. Dalton Transactions, 2006, , 3685-3692.	3.3	59
139	2-Aza-1,3-butadiene Derivatives Featuring an Anthracene or Pyrene Unit:  Highly Selective Colorimetric and Fluorescent Signaling of Cu2+Cation. Organic Letters, 2006, 8, 3235-3238.	4.6	200
140	Synthesis and Characterization of Radical Cations Derived from Mono- and Biferrocenyl-Substituted 2-Aza-1,3-butadienes: A Study of the Influence of an Asymmetric and Oxidizable Bridge on Intramolecular Electron Transfer. European Journal of Inorganic Chemistry, 2005, 2005, 2436-2450.	2.0	46
141	An Electroactive Nitrogen-Rich [4.4]Ferrocenophane Displaying Redox-Switchable Behavior: Selective Sensing, Complexation, and Decomplexation of Mg2+ions. Angewandte Chemie - International Edition, 2005, 44, 1977-1981.	13.8	39
142	An Electroactive Nitrogen-Rich [4.4]Ferrocenophane Displaying Redox-Switchable Behavior: Selective Sensing, Complexation, and Decomplexation of Mg2+ions. Angewandte Chemie, 2005, 117, 2013-2017.	2.0	7
143	Multifunctional Linear Triferrocene Derivatives Linked by Oxidizable Bridges:  Optical, Electronic, and Cation Sensing Properties. Organic Letters, 2005, 7, 3171-3174.	4.6	33
144	Preparation, Structure, and Anion Sensing Properties of 1,n-Diaza[n]ferrocenophanes. Journal of Organic Chemistry, 2005, 70, 6603-6608.	3.2	38

#	Article	IF	CITATIONS
145	New Hg2+and Cu2+Selective Chromo- and Fluoroionophore Based on a Bichromophoric Azine. Organic Letters, 2005, 7, 5869-5872.	4.6	234
146	Electrophilic behaviour of 3-methyl-2-methylthio-1,3,4-thiadiazolium salts: A multimodal theoretical approach. Arkivoc, 2005, 2005, 415-437.	0.5	20
147	A New Multifunctional Ferrocenyl-Substituted Ferrocenophane Derivative: Optical and Electronic Properties and Selective Recognition of Mg2+ Ions. Chemistry - A European Journal, 2004, 10, 1815-1826.	3.3	52
148	A nitrate-selective electrode based on a tris(2-aminoethyl)amine triamide derivative receptor. Analytica Chimica Acta, 2004, 525, 231-237.	5.4	23
149	A new fluoride selective electrochemical and fluorescent chemosensor based on a ferrocene–naphthalene dyad. Chemical Communications, 2004, , 1658-1659.	4.1	73
150	Selective Fluorescence Sensing of Li+in an Aqueous Environment by a Ferroceneâ^'Anthracene-Linked Dyad. Organic Letters, 2004, 6, 4599-4602.	4.6	53
151	Synthesis and properties of a new class of nitrogen-rich multinuclear[m.n] ferrocenophanes. Chemical Communications, 2004, , 458-459.	4.1	37
152	Solid state conformational and theoretical study of complexes containing the (CxN)Pd moiety (CxN =) Tj ETQq0 (0 0 rgBT /0 2.g	Dvgrlock 10 ⁻
153	A new insight into the problem of stabilisation of α-carbocationic centres in the ferrocene series. Tetrahedron Letters, 2002, 43, 4717-4720.	1.4	8
154	Syntheses of Bile Pigments. Part 18. Synthesis and conformational studies of oxa- and thia-deaza-biliverdin analogues. Helvetica Chimica Acta, 1994, 77, 1837-1850.	1.6	8
155	Synthesis of a Novel Class of Macrocyclic Compounds Containing 1,3,4-Thiadiazole Rings as Subunits. Journal of Organic Chemistry, 1994, 59, 3665-3669.	3.2	20
156	Preparation of a Novel Type of Ligands Incorporating Two or Three 1,3,4-Thiadiazole Units.	0.7	5

155	Journal of Organic Chemistry, 1994, 59, 3665-3669.	3.2	20
156	Preparation of a Novel Type of Ligands Incorporating Two or Three 1,3,4-Thiadiazole Units. Heterocycles, 1993, 36, 1263.	0.7	5
157	Methyl 2-methyldithiocarbazate in heterocyclic synthesis: preparation of 2,5-disubstituted 1,3,4-thiadiazoles, bis(1,3,4-thiadiazolium) salts and macrocycles containing 1,3,4-thiadiazole subunits. X-Ray crystal structure of 2,2′-bis[4,5-dihydro-5-(2-hydroxyethylimino)-4-methyl-1,3,4-thiadiazole]. Iournal of the Chemical Society Perkin Transactions 1. 1991 1159-1166.	0.9	10
158	Synthesis of 1,2,4-Triazole and 1,3,4-Thiadiazole Derivatives from Methyl 2-Methyldithiocarbazate and Heterocumulenes. Synthesis, 1989, 1989, 923-929.	2.3	16
159	2-Methylthio-1,3,4-thiadiazolium Cations as Useful Precursors for the Preparation of 2-Amino-1,3,4-thiadizole Derivatives and as Dehydrating Reagents of Aldoximes. Heterocycles, 1989, 29, 2301.	0.7	12
160	Synthesis of Bridgehead-nitrogen Heterocycles from Pyrylium Salts: Preparation of the Novel Tricyclic Thiazolo[2,3-a]pyrido[2,1-f][1,2,4]triazine Ring System. Heterocycles, 1987, 26, 2183.	0.7	10