
Chao Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9312968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A quasi-2D perovskite antireflection coating to boost the performance of multilayered PdTe ₂ /Ge heterostructure-based near-infrared photodetectors. Journal of Materials Chemistry C, 2022, 10, 6025-6035.	5.5	5
2	Ti3C2Tx MXene/Ge 2D/3D van der Waals heterostructures as highly efficient and fast response near-infrared photodetectors. Applied Physics Letters, 2022, 120, .	3.3	11
3	Patterned growth of β-Ga2O3 thin films for solar-blind deep-ultraviolet photodetectors array and optical imaging application. Journal of Materials Science and Technology, 2021, 72, 189-196.	10.7	81
4	Construction of PtSe ₂ /Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications. Nanoscale, 2021, 13, 7606-7612.	5.6	27
5	Fabrication of Addressable Perovskite Film Arrays for High-Performance Photodetection and Real-Time Image Sensing Application. Journal of Physical Chemistry Letters, 2021, 12, 2930-2936.	4.6	23
6	Enhanced Light Trapping in Conformal CuO/Si Microholes Array Heterojunction for Self-Powered Broadband Photodetection. IEEE Electron Device Letters, 2021, 42, 883-886.	3.9	7
7	Multilayered PdTeâ,,/GaN Heterostructures for Visible-Blind Deep-Ultraviolet Photodetection. IEEE Electron Device Letters, 2021, 42, 1192-1195.	3.9	18
8	Multilayered PtSe ₂ /pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications. Journal of Materials Chemistry C, 2021, 9, 2823-2832.	5.5	20
9	Electrically adjusted deep-ultraviolet/near-infrared single-band/dual-band imaging photodetectors based on Cs ₃ Cu ₂ I ₅ /PdTe ₂ /Ge multiheterostructures. Journal of Materials Chemistry C, 2021, 9, 14897-14907.	5.5	14
10	Perovskiteâ€Based Phototransistors and Hybrid Photodetectors. Advanced Functional Materials, 2020, 30, 1903907.	14.9	225
11	High-performance light trajectory tracking and image sensing devices based on a γ-In ₂ Se ₃ /GaAs heterostructure. Journal of Materials Chemistry C, 2020, 8, 13762-13769.	5.5	11
12	A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sensors and Actuators B: Chemical, 2020, 321, 128543.	7.8	31
13	Highly Sensitive Narrowband Si Photodetector With Peak Response at Around 1060 nm. IEEE Transactions on Electron Devices, 2020, 67, 3211-3214.	3.0	26
14	Controlled synthesis of GaSe microbelts for high-gain photodetectors induced by the electron trapping effect. Journal of Materials Chemistry C, 2020, 8, 5375-5379.	5.5	12
15	Self-Powered Filterless Narrow-Band p–n Heterojunction Photodetector for Low Background Limited Near-Infrared Image Sensor Application. ACS Applied Materials & Interfaces, 2020, 12, 21845-21853.	8.0	37
16	Characterization of structural transitions and lattice dynamics of hybrid organic–inorganic perovskite CH ₃ NH ₃ Pbl ₃ *. Chinese Physics B, 2019, 28, 076102.	1.4	10
17	Catalystâ€Free Vapor–Solid Deposition Growth of βâ€Ga ₂ O ₃ Nanowires for DUV Photodetector and Image Sensor Application. Advanced Optical Materials, 2019, 7, 1901257.	7.3	62
18	Sensitive Deep Ultraviolet Photodetector and Image Sensor Composed of Inorganic Lead-Free Cs ₃ Cu ₂ I ₅ Perovskite with Wide Bandgap. Journal of Physical Chemistry Letters, 2019, 10, 5343-5350.	4.6	171

#	Article	IF	CITATIONS
19	Defect-induced broadband photodetection of layered γ-In ₂ Se ₃ nanofilm and its application in near infrared image sensors. Journal of Materials Chemistry C, 2019, 7, 11532-11539.	5.5	36
20	Inorganic CsBi ₃ 1 ₁₀ perovskite/silicon heterojunctions for sensitive, self-driven and air-stable NIR photodetectors. Journal of Materials Chemistry C, 2019, 7, 863-870.	5.5	50
21	Opening the Band Gap of Graphene via Fluorination for High-Performance Dual-Mode Photodetector Application. ACS Applied Materials & Interfaces, 2019, 11, 21702-21710.	8.0	28
22	A Highly Sensitive Perovskite/Organic Semiconductor Heterojunction Phototransistor and Its Device Optimization Utilizing the Selective Electron Trapping Effect. Advanced Optical Materials, 2019, 7, 1900272.	7.3	35
23	PdSe ₂ Multilayer on Germanium Nanocones Array with Light Trapping Effect for Sensitive Infrared Photodetector and Image Sensing Application. Advanced Functional Materials, 2019, 29, 1900849.	14.9	90
24	Asymmetric Contactâ€Induced Selfâ€Driven Perovskiteâ€Microwireâ€Array Photodetectors. Advanced Electronic Materials, 2019, 5, 1900135.	5.1	40
25	A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe ₂ /Ge heterojunction. Journal of Materials Chemistry C, 2019, 7, 5019-5027.	5.5	58
26	Grapheneâ€Assisted Growth of Patterned Perovskite Films for Sensitive Light Detector and Optical Image Sensor Application. Small, 2019, 15, e1900730.	10.0	53
27	Recent Progress in Solarâ€Blind Deepâ€Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors. Advanced Functional Materials, 2019, 29, 1806006.	14.9	334
28	Ultrawideâ€Bandgap Semiconductors: Recent Progress in Solarâ€Blind Deepâ€Ultraviolet Photodetectors Based on Inorganic Ultrawide Bandgap Semiconductors (Adv. Funct. Mater. 9/2019). Advanced Functional Materials, 2019, 29, 1970057.	14.9	8
29	Photodetectors: Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications (Adv. Funct. Mater. 1/2019). Advanced Functional Materials, 2019, 29, 1970005.	14.9	13
30	Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Advanced Functional Materials, 2019, 29, 1806878.	14.9	286
31	Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe ₂ /Perovskite Heterojunctions. Journal of Physical Chemistry Letters, 2018, 9, 1185-1194.	4.6	159
32	Graphene/Semiconductor Hybrid Heterostructures for Optoelectronic Device Applications. Nano Today, 2018, 19, 41-83.	11.9	172
33	Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction. Advanced Functional Materials, 2018, 28, 1705970.	14.9	314
34	Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications. Journal of Materials Chemistry C, 2018, 6, 3815-3833.	5.5	85
35	Lasing Characteristics of CH ₃ NH ₃ PbCl ₃ Single rystal Microcavities under Multiphoton Excitation. Advanced Optical Materials, 2018, 6, 1700992.	7.3	22
36	Enhanced performance of perovskite/organic-semiconductor hybrid heterojunction photodetectors with the electron trapping effects. Journal of Materials Chemistry C, 2018, 6, 1338-1342.	5.5	47

#	Article	IF	CITATIONS
37	Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector. Nanotechnology, 2018, 29, 505203.	2.6	9
38	Silicon/Perovskite Core–Shell Heterojunctions with Light-Trapping Effect for Sensitive Self-Driven Near-Infrared Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 27850-27857.	8.0	55
39	High-performance broadband heterojunction photodetectors based on multilayered PtSe ₂ directly grown on a Si substrate. Nanoscale, 2018, 10, 15285-15293.	5.6	102
40	Photodetectors: Fast, Selfâ€Driven, Airâ€Stable, and Broadband Photodetector Based on Vertically Aligned PtSe ₂ /GaAs Heterojunction (Adv. Funct. Mater. 16/2018). Advanced Functional Materials, 2018, 28, 1870106.	14.9	5
41	Perovskite/Poly(3-hexylthiophene)/Graphene Multiheterojunction Phototransistors with Ultrahigh Gain in Broadband Wavelength Region. ACS Applied Materials & Interfaces, 2017, 9, 1569-1576.	8.0	110
42	Flexible Photodetectors Based on Novel Functional Materials. Small, 2017, 13, 1701822.	10.0	259
43	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Science and Applications, 2017, 6, e17023-e17023.	16.6	272
44	Photodetectors Based on Twoâ€Dimensional Layered Materials Beyond Graphene. Advanced Functional Materials, 2017, 27, 1603886.	14.9	534
45	Amplified Spontaneous Emission from Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. Advanced Optical Materials, 2016, 4, 1053-1059.	7.3	47
46	Ferroelectricâ€Driven Performance Enhancement of Graphene Fieldâ€Effect Transistors Based on Vertical Tunneling Heterostructures. Advanced Materials, 2016, 28, 10048-10054.	21.0	58
47	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151-157.	16.0	200
48	Polymeric Carbon Nitride Nanosheets/Graphene Hybrid Phototransistors with High Responsivity. Advanced Optical Materials, 2016, 4, 555-561.	7.3	35
49	Surface charge transfer induced p-CdS nanoribbon/n-Si heterojunctions as fast-speed self-driven photodetectors. Journal of Materials Chemistry C, 2015, 3, 6307-6313.	5.5	24
50	Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector. Optics Express, 2015, 23, 4839.	3.4	39
51	One-dimensional CuO nanowire: synthesis, electrical, and optoelectronic devices application. Nanoscale Research Letters, 2014, 9, 637.	5.7	71
52	The Effect of Plasmonic Nanoparticles on the Optoelectronic Characteristics of CdTe Nanowires. Small, 2014, 10, 2645-2652.	10.0	43
53	Surface plasmon resonance enhanced highly efficient planar silicon solar cell. Nano Energy, 2014, 9, 112-120.	16.0	83
54	Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors. ACS Nano, 2014, 8, 4015-4022.	14.6	258

#	Article	IF	CITATIONS
55	Light trapping and surface plasmon enhanced high-performance NIR photodetector. Scientific Reports, 2014, 4, 3914.	3.3	132
56	High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. Journal of Materials Chemistry A, 2013, 1, 6593.	10.3	122
57	High-performance nonvolatile Al/AlO _{<i>x</i>} /CdTe:Sb nanowire memory device. Nanotechnology, 2013, 24, 355203.	2.6	19
58	Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Applied Materials & Interfaces, 2013, 5, 9362-9366.	8.0	347
59	High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. Journal of Materials Chemistry A, 2013, 1, 15348.	10.3	86
60	Monolayer Graphene Film on ZnO Nanorod Array for Highâ€₽erformance Schottky Junction Ultraviolet Photodetectors. Small, 2013, 9, 2872-2879.	10.0	271
61	Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells. Journal of Physical Chemistry C, 2013, 117, 11968-11976.	3.1	96
62	Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A, 2013, 1, 8567.	10.3	123
63	Ultrahigh Mobility of pâ€Type CdS Nanowires: Surface Charge Transfer Doping and Photovoltaic Devices. Advanced Energy Materials, 2013, 3, 579-583.	19.5	37
64	TiO ₂ Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors. Particle and Particle Systems Characterization, 2013, 30, 630-636.	2.3	53
65	ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. Journal of Materials Chemistry, 2012, 22, 22873.	6.7	32
66	p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors. CrystEngComm, 2012, 14, 7222.	2.6	38
67	Aluminium-doped n-type ZnS nanowires as high-performance UV and humidity sensors. Journal of Materials Chemistry, 2012, 22, 6856.	6.7	79
68	Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions. Applied Physics Letters, 2012, 100, 193103.	3.3	65
69	Chlorineâ€Ðoped ZnSe Nanoribbons with Tunable nâ€īype Conductivity as Highâ€Gain and Flexible Blue/UV Photodetectors. ChemPlusChem, 2012, 77, 470-475.	2.8	15
70	High-Performance Blue-Light Photodetectors Based on Single-Crystal ZnSe Nanoribbons with Controlled Gallium Doping. Science of Advanced Materials, 2012, 4, 332-336.	0.7	9
71	High-gain visible-blind UV photodetectors based on chlorine-doped n-type ZnS nanoribbons with tunable optoelectronic properties. Journal of Materials Chemistry, 2011, 21, 12632.	6.7	64
72	Tuning the electrical transport properties of n-type CdS nanowiresvia Ga doping and their nano-optoelectronic applications. Physical Chemistry Chemical Physics, 2011, 13, 14663.	2.8	47

#	Article	IF	CITATIONS
73	Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Applied Physics Letters, 2011, 99, .	3.3	120
74	Surface induced negative photoconductivity in p-type ZnSe : Bi nanowires and their nano-optoelectronic applications. Journal of Materials Chemistry, 2011, 21, 6736.	6.7	89
75	Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries. Nanoscale, 2011, 3, 4798.	5.6	27
76	Nano-Schottky barrier diodes based on Sb-doped ZnS nanoribbons with controlled p-type conductivity. Applied Physics Letters, 2011, 98, .	3.3	35
77	Distinguishing wavelength using two parallelly stacking graphene/thin Si/graphene heterojunctions. Journal of Materials Chemistry C, 0, , .	5.5	6
78	Fabrication of a γ-In ₂ Se ₃ /Si heterostructure phototransistor for heart rate detection. Journal of Materials Chemistry C, 0, , .	5.5	4