
Gregory Lizée

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9312009/publications.pdf Version: 2024-02-01

CRECORY LIZÃ OF

#	Article	IF	CITATIONS
1	Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell, 2022, 40, 509-523.e6.	16.8	115
2	NLRC5/CITA expression correlates with efficient response to checkpoint blockade immunotherapy. Scientific Reports, 2021, 11, 3258.	3.3	19
3	Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discovery, 2021, 11, 1024-1039.	9.4	56
4	Randomized phase II trial of lymphodepletion plus adoptive cell transfer of tumor-infiltrating lymphocytes, with or without dendritic cell vaccination, in patients with metastatic melanoma. , 2021, 9, e002449.		16
5	Neoantigen vaccination induces clinical and immunologic responses in non-small cell lung cancer patients harboring EGFR mutations. , 2021, 9, e002531.		24
6	Evolution of CD8+ T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells, 2021, 10, 2379.	4.1	23
7	Vestigial-like 1 is a shared targetable cancer-placenta antigen expressed by pancreatic and basal-like breast cancers. Nature Communications, 2020, 11, 5332.	12.8	15
8	HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy. JCO Clinical Cancer Informatics, 2020, 4, 623-636.	2.1	23
9	Markov state modeling reveals alternative unbinding pathways for peptide–MHC complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30610-30618.	7.1	22
10	A phase Ib study of endogenous SLC45A2-specific cytotoxic T cells for the treatment of patients with metastatic uveal melanoma Journal of Clinical Oncology, 2020, 38, TPS10086-TPS10086.	1.6	4
11	Anti-OX40 Antibody Directly Enhances The Function of Tumor-Reactive CD8+ T Cells and Synergizes with PI3KÎ ² Inhibition in PTEN Loss Melanoma. Clinical Cancer Research, 2019, 25, 6406-6416.	7.0	35
12	Using parallelized incremental meta-docking can solve the conformational sampling issue when docking large ligands to proteins. BMC Molecular and Cell Biology, 2019, 20, 42.	2.0	22
13	Association of PIK3CA mutations (mut) with immune engagement and clinical benefit from immunotherapy in microsatellite stable (MSS) colorectal cancer (CRC) patients (pts) Journal of Clinical Oncology, 2019, 37, 3604-3604.	1.6	8
14	The RNA-binding Protein MEX3B Mediates Resistance to Cancer Immunotherapy by Downregulating HLA-A Expression. Clinical Cancer Research, 2018, 24, 3366-3376.	7.0	73
15	General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept. Scientific Reports, 2018, 8, 4327.	3.3	41
16	Dynamic changes during the treatment of pancreatic cancer. Oncotarget, 2018, 9, 14764-14790.	1.8	21
17	Nextâ€generation sequencing of Chinese stage IV lung cancer patients reveals an association between <i>ECFR</i> mutation status and survival outcome. Clinical Genetics, 2017, 91, 488-493.	2.0	17
18	SLC45A2: A Melanoma Antigen with High Tumor Selectivity and Reduced Potential for Autoimmune Toxicity. Cancer Immunology Research, 2017, 5, 618-629.	3.4	34

GREGORY LIZéE

#	Article	IF	CITATIONS
19	HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nature Communications, 2017, 8, 451.	12.8	107
20	DINC 2.0: A New Protein–Peptide Docking Webserver Using an Incremental Approach. Cancer Research, 2017, 77, e55-e57.	0.9	100
21	Cathepsin G is broadly expressed in acute myeloid leukemia and is an effective immunotherapeutic target. Leukemia, 2017, 31, 234-237.	7.2	30
22	Interpreting T-Cell Cross-reactivity through Structure: Implications for TCR-Based Cancer Immunotherapy. Frontiers in Immunology, 2017, 8, 1210.	4.8	50
23	Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncolmmunology, 2016, 5, e1238539.	4.6	21
24	Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy. Cancer Discovery, 2016, 6, 202-216.	9.4	1,158
25	Trouble at the core: BRAF(V600E) drives multiple modes of T-cell suppression in melanoma. Oncolmmunology, 2016, 5, e1078966.	4.6	8
26	Analysis of the Intratumoral Adaptive Immune Response in Well Differentiated and Dedifferentiated Retroperitoneal Liposarcoma. Sarcoma, 2015, 2015, 1-9.	1.3	48
27	Peptide/MHC Tetramer–Based Sorting of CD8+ T Cells to a Leukemia Antigen Yields Clonotypes Drawn Nonspecifically from an Underlying Restricted Repertoire. Cancer Immunology Research, 2015, 3, 228-235.	3.4	16
28	BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma. Cancer Immunology Research, 2015, 3, 602-609.	3.4	133
29	Harnessing the Power of the Immune System to Target Cancer. Annual Review of Medicine, 2013, 64, 71-90.	12.2	126
30	BRAF Inhibition Is Associated with Enhanced Melanoma Antigen Expression and a More Favorable Tumor Microenvironment in Patients with Metastatic Melanoma. Clinical Cancer Research, 2013, 19, 1225-1231.	7.0	832
31	Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncolmmunology, 2013, 2, e22691.	4.6	32
32	Strong emerging rationale for combining oncogene-targeted agents with immunotherapy. Oncolmmunology, 2013, 2, e22730.	4.6	7
33	Forging a link between oncogenic signaling and immunosuppression in melanoma. Oncolmmunology, 2013, 2, e22745.	4.6	7
34	BRAF Inhibition Increases Tumor Infiltration by T cells and Enhances the Antitumor Activity of Adoptive Immunotherapy in Mice. Clinical Cancer Research, 2013, 19, 393-403.	7.0	336
35	A Novel HLA-A*0201 Restricted Peptide Derived from Cathepsin G Is an Effective Immunotherapeutic Target in Acute Myeloid Leukemia. Clinical Cancer Research, 2013, 19, 247-257.	7.0	33
36	Combination Small Molecule MEK and PI3K Inhibition Enhances Uveal Melanoma Cell Death in a Mutant <i>GNAQ-</i> and <i>GNA11</i> -Dependent Manner. Clinical Cancer Research, 2012, 18, 4345-4355.	7.0	131

GREGORY LIZéE

#	Article	IF	CITATIONS
37	Detection and Characterization of a Novel Subset of CD8+CD57+ T Cells in Metastatic Melanoma with an Incompletely Differentiated Phenotype. Clinical Cancer Research, 2012, 18, 2465-2477.	7.0	19
38	Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in Melanoma. Clinical Cancer Research, 2012, 18, 5329-5340.	7.0	266
39	BRAF(V600) Inhibitor GSK2118436 Targeted Inhibition of Mutant BRAF in Cancer Patients Does Not Impair Overall Immune Competency. Clinical Cancer Research, 2012, 18, 2326-2335.	7.0	109
40	The Role of Antigen Cross-presentation From Leukemia Blasts on Immunity to the Leukemia-associated Antigen PR1. Journal of Immunotherapy, 2012, 35, 309-320.	2.4	37
41	Agonistic Antibody to CD40 Boosts the Antitumor Activity of Adoptively Transferred T Cells In Vivo. Journal of Immunotherapy, 2012, 35, 276-282.	2.4	31
42	Specific Lymphocyte Subsets Predict Response to Adoptive Cell Therapy Using Expanded Autologous Tumor-Infiltrating Lymphocytes in Metastatic Melanoma Patients. Clinical Cancer Research, 2012, 18, 6758-6770.	7.0	345
43	PD-1 Blockade Enhances T-cell Migration to Tumors by Elevating IFN-Î ³ Inducible Chemokines. Cancer Research, 2012, 72, 5209-5218.	0.9	351
44	Human Dendritic Cells in Cancer. , 2012, , 121-145.		0
45	Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity. PLoS ONE, 2011, 6, e22939.	2.5	28
46	Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma. Molecular Cancer Research, 2011, 9, 1537-1550.	3.4	77
47	Identification of Leukemia Associated Antigens From ANKRD17 and CDK4 Using Mass Spectrometry Based Screening,. Blood, 2011, 118, 4020-4020.	1.4	1
48	A Novel HLA-A2 Restricted Peptide Derived From Cathepsin G Is An Effective Immunotherapeutic Target for Myeloid Leukemia. Blood, 2011, 118, 2986-2986.	1.4	0
49	Transduction of Tumor-Specific T Cells with CXCR2 Chemokine Receptor Improves Migration to Tumor and Antitumor Immune Responses. Clinical Cancer Research, 2010, 16, 5458-5468.	7.0	190
50	A novel strategy for rapid and efficient isolation of human tumor-specific CD4+ and CD8+ T-cell clones. Journal of Immunological Methods, 2008, 331, 13-26.	1.4	15
51	MHC Class I Endosomal and Lysosomal Trafficking Coincides with Exogenous Antigen Loading in Dendritic Cells. PLoS ONE, 2008, 3, e3247.	2.5	72
52	Plasmacytoid dendritic cells induce NK cell–dependent, tumor antigen–specific T cell cross-priming and tumor regression in mice. Journal of Clinical Investigation, 2008, 118, 1165-75.	8.2	238
53	Less Yin, More Yang: Confronting the Barriers to Cancer Immunotherapy. Clinical Cancer Research, 2007, 13, 5250-5255.	7.0	57
54	IL-21 synergizes with IL-7 to augment expansion and anti-tumor function of cytotoxic T cells. International Immunology, 2007, 19, 1213-1221.	4.0	79

GREGORY LIZéE

#	Article	IF	CITATIONS
55	HLA-A0201 positive pancreatic cell lines: new findings and discrepancies. Cancer Immunology, Immunotherapy, 2007, 56, 719-724.	4.2	3
56	Improving Antitumor Immune Responses by Circumventing Immunoregulatory Cells and Mechanisms. Clinical Cancer Research, 2006, 12, 4794-4803.	7.0	100
57	Immunosuppression in Melanoma Immunotherapy: Potential Opportunities for Intervention. Clinical Cancer Research, 2006, 12, 2359s-2365s.	7.0	33
58	Intralymphatic Dendritic Cell Vaccination Induces Tumor Antigen–Specific, Skin-Homing T Lymphocytes. Clinical Cancer Research, 2006, 12, 5801-5808.	7.0	56
59	A Novel Strategy for Generation of Human Tumor-Specific T Cell Clones for Adoptive Transfer Blood, 2006, 108, 3713-3713.	1.4	1
60	Tails of wonder: endocytic-sorting motifs key for exogenous antigen presentation. Trends in Immunology, 2005, 26, 141-149.	6.8	38
61	Lentivirus Vector-Mediated Expression of Tumor-Associated Epitopes by Human Antigen Presenting Cells. Human Gene Therapy, 2004, 15, 393-404.	2.7	63
62	Dendritic Cells Strongly Boost the Antitumor Activity of Adoptively Transferred T Cells In vivo. Cancer Research, 2004, 64, 6783-6790.	0.9	116
63	CD4+ T-Cell Recognition of Mutated B-RAF in Melanoma Patients Harboring the V599E Mutation. Cancer Research, 2004, 64, 1595-1599.	0.9	88
64	Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nature Immunology, 2003, 4, 1065-1073.	14.5	166
65	Real-Time Quantitative Reverse Transcriptase-Polymerase Chain Reaction as a Method for Determining Lentiviral Vector Titers and Measuring Transgene Expression, Human Gene Therapy, 2003, 14, 497-507	2.7	122