Soo-Eun Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9311645/publications.pdf

Version: 2024-02-01

39 papers

1,914 citations

331670 21 h-index 315739 38 g-index

45 all docs

45 docs citations

45 times ranked

1184 citing authors

#	Article	IF	CITATIONS
1	Predicting Persistent Developmental Stuttering Using a Cumulative Risk Approach. Journal of Speech, Language, and Hearing Research, 2022, 65, 70-95.	1.6	13
2	Charting brain growth and aging at high spatial precision. ELife, 2022, 11, .	6.0	61
3	Tract profiles of the cerebellar peduncles in children who stutter. Brain Structure and Function, 2022, 227, 1773-1787.	2.3	5
4	Association Between Gray Matter Volume Variations and Energy Utilization in the Brain: Implications for Developmental Stuttering. Journal of Speech, Language, and Hearing Research, 2021, 64, 2317-2324.	1.6	6
5	Developmental Factors That Predict Head Movement During Resting-State Functional Magnetic Resonance Imaging in 3–7-Year-Old Stuttering and Non-stuttering Children. Frontiers in Neuroscience, 2021, 15, 753010.	2.8	2
6	Neurofilament-lysosomal genetic intersections in the cortical network of stuttering. Progress in Neurobiology, 2020, 184, 101718.	5 . 7	30
7	A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production. Frontiers in Psychology, 2020, 10, 2995.	2.1	17
8	Lexical diversity and lexical skills in children who stutter. Journal of Fluency Disorders, 2020, 63, 105747.	1.7	12
9	Linking Lysosomal Enzyme Targeting Genes and Energy Metabolism with Altered Gray Matter Volume in Children with Persistent Stuttering. Neurobiology of Language (Cambridge, Mass), 2020, 1, 365-380.	3.1	20
10	Stuttering and gray matter morphometry: A population-based neuroimaging study in young children. Brain and Language, 2019, 194, 121-131.	1.6	9
11	Stuttering Severity Modulates Effects of Non-invasive Brain Stimulation in Adults Who Stutter. Frontiers in Human Neuroscience, 2019, 13, 411.	2.0	13
12	Functional and Neuroanatomical Bases of Developmental Stuttering: Current Insights. Neuroscientist, 2019, 25, 566-582.	3 . 5	62
13	Neural activity associated with rhythmicity of song in juvenile male and female zebra finches. Behavioural Processes, 2019, 163, 45-52.	1.1	11
14	Involvement of the Cortico-Basal Ganglia-Thalamocortical Loop in Developmental Stuttering. Frontiers in Psychology, 2019, 10, 3088.	2.1	79
15	Neuroanatomical Correlates of Childhood Stuttering: MRI Indices of White and Gray Matter Development That Differentiate Persistence Versus Recovery. Journal of Speech, Language, and Hearing Research, 2019, 62, 2986-2998.	1.6	14
16	A systematic literature review of sex differences in childhood language and brain development. Neuropsychologia, 2018, 114, 19-31.	1.6	111
17	Anomalous network architecture of the resting brain in children who stutter. Journal of Fluency Disorders, 2018, 55, 46-67.	1.7	62
18	Auditoryâ€motor adaptation is reduced in adults who stutter but not in children who stutter. Developmental Science, 2018, 21, e12521.	2.4	60

#	Article	IF	CITATIONS
19	Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter. Brain, 2018, 141, 2670-2684.	7.6	41
20	White matter developmental trajectories associated with persistence and recovery of childhood stuttering. Human Brain Mapping, 2017, 38, 3345-3359.	3.6	61
21	Social and Cognitive Impressions of Adults Who Do and Do Not Stutter Based on Listeners' Perceptions of Read-Speech Samples. Frontiers in Psychology, 2017, 8, 1148.	2.1	11
22	ZENK induction in the zebra finch brain by song: Relationship to hemisphere, rhythm, oestradiol and sex. Journal of Neuroendocrinology, 2017, 29, e12543.	2.6	15
23	Relation between functional connectivity and rhythm discrimination in children who do and do not stutter. Neurolmage: Clinical, 2016, 12, 442-450.	2.7	43
24	Dissociations among linguistic, cognitive, and auditory-motor neuroanatomical domains in children who stutter. Journal of Communication Disorders, 2016, 61, 29-47.	1.5	36
25	Evidence for a rhythm perception deficit in children who stutter. Brain and Language, 2015, 144, 26-34.	1.6	66
26	White matter neuroanatomical differences in young children who stutter. Brain, 2015, 138, 694-711.	7.6	115
27	Research Updates in Neuroimaging Studies of Children Who Stutter. Seminars in Speech and Language, 2014, 35, 067-079.	0.8	30
28	Arrhythmic Song Exposure Increases ZENK Expression in Auditory Cortical Areas and Nucleus Taeniae of the Adult Zebra Finch. PLoS ONE, 2014, 9, e108841.	2.5	23
29	Neural network connectivity differences in children who stutter. Brain, 2013, 136, 3709-3726.	7.6	162
30	Corpus callosum morphology in children who stutter. Journal of Communication Disorders, 2012, 45, 279-289.	1.5	22
31	Evidence of Left Inferior Frontal–Premotor Structural and Functional Connectivity Deficits in Adults Who Stutter. Cerebral Cortex, 2011, 21, 2507-2518.	2.9	139
32	Corpus callosum differences associated with persistent stuttering in adults. Journal of Communication Disorders, 2011, 44, 470-477.	1.5	29
33	Using brain imaging to unravel the mysteries of stuttering. Cerebrum: the Dana Forum on Brain Science, 2011, 2011, 12.	0.1	2
34	Similarities in speech and white matter characteristics in idiopathic developmental stuttering and adult-onset stuttering. Journal of Neurolinguistics, 2010, 23, 455-469.	1.1	20
35	Brain imaging in children. , 2010, , 71-94.		1
36	Brain activation abnormalities during speech and non-speech in stuttering speakers. Neurolmage, 2009, 46, 201-212.	4.2	151

Soo-Eun Chang

#	Article	IF	CITATIONS
37	Common neural substrates support speech and non-speech vocal tract gestures. Neurolmage, 2009, 47, 314-325.	4.2	63
38	Brain anatomy differences in childhood stuttering. NeuroImage, 2008, 39, 1333-1344.	4.2	247
39	Coarticulation and Formant Transition Rate in Young Children Who Stutter. Journal of Speech, Language, and Hearing Research, 2002, 45, 676-688.	1.6	40