
Miguel Burgos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell adhesion and immune response, two main functions altered in the transcriptome of seasonally regressed testes of two mammalian species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2023, 340, 231-244.	1.3	1
2	Sox9 is required for nail bed differentiation and digit tip regeneration. Journal of Investigative Dermatology, 2022, , .	0.7	2
3	Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. Journal of Personalized Medicine, 2022, 12, 932.	2.5	0
4	Common genetic variation in <i>KATNAL1</i> nonâ€coding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology, 2022, 10, 1339-1350.	3.5	5
5	Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology, 2021, 9, 1151-1165.	3.5	12
6	Sex Maintenance in Mammals. Genes, 2021, 12, 999.	2.4	12
7	Mediterranean Pine Vole, Microtus duodecimcostatus: A Paradigm of an Opportunistic Breeder. Animals, 2021, 11, 1639.	2.3	5
8	Divergent Seasonal Reproductive Patterns in Syntopic Populations of Two Murine Species in Southern Spain, Mus spretus and Apodemus sylvaticus. Animals, 2021, 11, 243.	2.3	14
9	Non-Coding RNAs: IncRNAs, miRNAs, and piRNAs in Sexual Development. Sexual Development, 2021, 15, 335-350.	2.0	11
10	Intronic variation of the SOHLH2 gene confers risk to male reproductive impairment. Fertility and Sterility, 2020, 114, 398-406.	1.0	9
11	Deficiency of the onco-miRNA cluster, miR-106bâ^¼25, causes oligozoospermia and the cooperative action of miR-106bâ^¼25 and miR-17â^¼92 is required to maintain male fertility. Molecular Human Reproduction, 2020, 26, 389-401.	, 2.8	10
12	Germ cell desquamation-based testis regression in a seasonal breeder, the Egyptian long-eared hedgehog, Hemiechinus auritus. PLoS ONE, 2018, 13, e0204851.	2.5	18
13	Sertoli cell-specific ablation of miR-17-92 cluster significantly alters whole testis transcriptome without apparent phenotypic effects. PLoS ONE, 2018, 13, e0197685.	2.5	11
14	Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution. Human Molecular Genetics, 2017, 26, 3531-3544.	2.9	34
15	Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. ELife, 2016, 5, .	6.0	74
16	Circannual Testis Changes in Seasonally Breeding Mammals. Sexual Development, 2015, 9, 205-215.	2.0	32
17	Specific Colon Cancer Cell Cytotoxicity Induced by Bacteriophage E Gene Expression under Transcriptional Control of Carcinoembryonic Antigen Promoter. International Journal of Molecular Sciences, 2015, 16, 12601-12615.	4.1	14
18	The testis of greater whiteâ€ŧoothed shrew <i>Crocidura russula</i> in Southern European populations: A case of adaptive lack of seasonal involution?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 304-315.	1.3	9

#	Article	IF	CITATIONS
19	Natural Exceptions to Normal Gonad Development in Mammals. Sexual Development, 2013, 7, 147-162.	2.0	28
20	Identification of Live Germ-Cell Desquamation as a Major Mechanism of Seasonal Testis Regression in Mammals: A Study in the Iberian Mole (Talpa occidentalis)1. Biology of Reproduction, 2013, 88, 101.	2.7	37
21	A MicroRNA (mmu-miR-124) Prevents Sox9 Expression in Developing Mouse Ovarian Cells1. Biology of Reproduction, 2013, 89, 78.	2.7	53
22	Pattern and Density of Vascularization in Mammalian Testes, Ovaries, and Ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 170-181.	1.3	9
23	Genes promoting and disturbing testis development. Histology and Histopathology, 2012, 27, 1361-83.	0.7	33
24	Origin and function of embryonic Sertoli cells. Biomolecular Concepts, 2011, 2, 537-547.	2.2	18
25	Expression of Genes Controlling Testicular Development in Adult Testis of the Seasonally Breeding Iberian Mole. Sexual Development, 2011, 5, 77-88.	2.0	16
26	Synergistic antitumoral effect of combination E gene therapy and Doxorubicin in MCF-7 breast cancer cells. Biomedicine and Pharmacotherapy, 2011, 65, 260-270.	5.6	12
27	Purification and Characterization of a Protein Capable of Binding To Fatty Acids and Bile Salts in Giardia lamblia. Journal of Parasitology, 2011, 97, 642-647.	0.7	4
28	E phage gene transfection enhances sensitivity of lung and colon cancer cells to chemotherapeutic agents. International Journal of Oncology, 2010, 37, 1503-14.	3.3	7
29	Role of Apoptosis and Cell Proliferation in the Testicular Dynamics of Seasonal Breeding Mammals: A Study in the Iberian Mole, Talpa occidentalis1. Biology of Reproduction, 2010, 83, 83-91.	2.7	52
30	Effectiveness of intranasal vaccination against Angiostrongylus costaricensis using a serine/threonine phosphatase 2 A synthetic peptide and recombinant antigens. Vaccine, 2010, 28, 5185-5196.	3.8	15
31	SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 734-748.	1.3	9
32	The spatio-temporal pattern of testis organogenesis in mammals - insights from the mole. International Journal of Developmental Biology, 2009, 53, 1035-1044.	0.6	19
33	Meiosis Onset Is Postponed to Postnatal Stages during Ovotestis Development in Female Moles. Sexual Development, 2007, 1, 66-76.	2.0	13
34	Developmental Stages and Growth Rate of the Mole Talpa occidentalis (Insectivora, Mammalia). Journal of Mammalogy, 2004, 85, 120-125.	1.3	24
35	Transmission analysis of B chromosomes in <i>Rattus rattus</i> from Northern Africa. Cytogenetic and Genome Research, 2004, 106, 344-346.	1.1	6
36	Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis. Developmental Biology, 2004, 268, 39-52.	2.0	32

#	Article	IF	CITATIONS
37	Abnormal sex-duct development in female moles: the role of anti-Müllerian hormone and testosterone. International Journal of Developmental Biology, 2003, 47, 451-8.	0.6	9
38	Silent ribosomal cistrons are located at the pairing segment of the postreductional sex chromosomes of Apodemus sylvaticus (Rodentia, Muridae). Heredity, 2001, 86, 128-133.	2.6	7
39	A faster procedure for preparing amniotic cells for sexing embryos. Technical Tips Online, 2001, 6, 39-40.	0.2	4
40	Silent ribosomal cistrons are located at the pairing segment of the postreductional sex chromosomes of Apodemus sylvaticus (Rodentia, Muridae). Heredity, 2001, 86, 128-133.	2.6	0
41	Inactive ribosomal cistrons are spread throughout the B chromosomes of Rattus rattus (Rodentia,) Tj ETQq1 1 0.	784314 rg 2.2	gBT_Overlock
42	Sex-chromosome pairing through heterochromatin in the African rodent Lemniscomys barbarus (Rodentia, Muridae). A synaptonemal complex study. Chromosome Research, 2000, 8, 277-283.	2.2	7
43	The <i>SRY</i> gene HMG-box in micro- and megabats. Cytogenetic and Genome Research, 2000, 88, 30-34.	1.1	8
44	Multiple mono- and polymorphic Y-linked copies of the <i>SRY </i> HMG-box in Microtidae. Cytogenetic and Genome Research, 1999, 86, 46-50.	1.1	24
45	The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and in-situ hybridization study. Chromosome Research, 1999, 7, 563-570.	2.2	15
46	Isolation of a Species-Specific Satellite DNA with a Novel CENP-B-like Box from the North African Rodent Lemniscomys barbarus. Experimental Cell Research, 1999, 250, 381-386.	2.6	10
47	Mammalian sex determination: joining pieces of the genetic puzzle. BioEssays, 1998, 20, 696-699.	2.5	15
48	Multiple, polymorphic copies of SRY in both males and females of the vole Microtus cabrerae. Cytogenetic and Genome Research, 1997, 79, 167-171.	1.1	31
49	Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity, 1997, 78, 229-234.	2.6	32
50	Recent evolution of NOR-bearing and sex chromosomes of the North African rodent Lemniscomys barbarus. Chromosome Research, 1997, 5, 481-485.	2.2	25
51	Did Spanish Moles Really Change Their Mechanism of Sex Determination in Only 5 Years?. Journal of Theoretical Biology, 1997, 188, 141-142.	1.7	2
52	Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity, 1997, 78, 229-234.	2.6	7
53	Females of four mole species of genusTalpa (Insectivora, mammalia) are true hermaphrodites with ovotestes. Molecular Reproduction and Development, 1996, 44, 289-294.	2.0	33
54	Puzzling out the genetics of mammalian sex determination. Trends in Genetics, 1996, 12, 164-166.	6.7	30

#	Article	IF	CITATIONS
55	Distribution of sister chromatid exchanges in different types of chromatin in the X chromosome ofMicrotus cabrerae. Experientia, 1996, 52, 511-515.	1.2	2
56	High sequence identity between the SRY HMG box from humans and insectivores. Mammalian Genome, 1996, 7, 536-538.	2.2	20
57	An alternative to blunt-end ligation for cloning DNA fragments with incompatible ends. Trends in Genetics, 1996, 12, 44.	6.7	18
58	Ovotestis variability in young and adult females of the moleTalpa occidentalis (Insectivora,) Tj ETQq0 0 0 rgBT /C)verlock 10	0 Tf 50 622 To
59	Females of four mole species of genus Talpa (Insectivora, mammalia) are true hermaphrodites with ovotestes. Molecular Reproduction and Development, 1996, 44, 289-294.	2.0	2
60	Cytogenetic peculiarities in the Algerian hedgehog: silver stains not only NORs but also heterochromatic blocks. Heredity, 1995, 75, 10-16.	2.6	51
61	A substance secreted by rat Sertoli cells induces feminization of embryonic chick testes in vitro. Anatomy and Embryology, 1994, 189, 531-7.	1.5	1
62	Procedures for <i>Sxs</i> Antigen Detection by Antibody-Mediated Cytotoxicity Tests. A Comparative Analysis. Journal of Immunoassay, 1994, 15, 357-370.	0.3	0
63	Restriction enzyme banding and in situ nick-translation on different types of hetero- and euchromatin. Experimental Cell Research, 1992, 202, 545-548.	2.6	9
64	Replication of the heterogeneous heterochromatin of the sex chromosomes ofMicrotus cabrerae. Experientia, 1992, 48, 1151-1153.	1.2	4
65	The synaptic sequence in hydroxyurea-treated spermatocytes of <i>Pitymys duodecimcostatus</i> (Rodentia, Microtidae). Cytogenetic and Genome Research, 1991, 56, 69-73.	1.1	3
66	Achiasmatic giant sex chromosomes in the vole <i>Microtus cabrerae</i> (Rodentia,) Tj ETQq0 0 0 rgB	T /Overloc 1.1	k 10 Tf 50 30
67	Achiasmatic sex chromosomes in <i>Pitymys duodecimcostatus</i> : mechanisms of association and segregation. Cytogenetic and Genome Research, 1991, 56, 78-81.	1.1	30
68	Synaptonemal complex analysis of spermatocytes of <i>Talpa occidentalis</i> (Insectivora, Mammalia): autosomal synapsis and substaging of zygonema and pachynema. Cytogenetic and Genome Research, 1990, 53, 97-102.	1.1	9
69	Fluorescence banding in four species of Microtidae: an analysis of the evolutive changes of the constitutive heterochromatin. Genetica, 1990, 81, 11-16.	1.1	21
70	Synaptonemal complex analysis in <i>Talpa occidentalis </i> spermatocytes (Insectivora, Mammalia). Cytogenetic and Genome Research, 1990, 54, 35-37.	1.1	4

71	Variable conservation of nucleolus organizer regions during karyotypic evolution in Microtidae. Genome, 1990, 33, 119-122.	2.0	19

72The reproductive cycle of Talpa occidentalis in the southeastern Iberian Peninsula. Acta Theriologica,
1990, 35, 165-169.1.120

#	Article	IF	CITATIONS
73	Quantitative analysis of silver staining of the nucleolar organizing region in <i>Eliomys quercinus</i> . Genome, 1989, 32, 978-982.	2.0	18
74	A study of the Ag-staining significance in mitotic NOR's. Heredity, 1988, 60, 125-127.	2.6	69
75	XY females in <i>Microtus cabrerae</i> (Rodentia, Microtidae): a case of possibly Y-linked sex reversal. Cytogenetic and Genome Research, 1988, 49, 275-277.	1.1	16
76	Heterogeneous heterochromatin and size variation in the sex chromosomes of <i>Micvotus cabrerae</i> . Cytogenetic and Genome Research, 1988, 47, 75-79.	1.1	34
77	Sex reversal in a wild population of Talpa occidentalis (Insectivora, mammalia). Genetical Research, 1988, 52, 135-140.	0.9	20
78	Comparative study of G- and C-banded chromosomes of five species of Microtidae: a chromosomal evolution analysis. Genome, 1988, 30, 540-546.	2.0	24
79	Comparative study of G- and C-banded chromosomes of five species of Microtidae. Genetica, 1986, 78, 3-12.	1.1	6
80	A Rapid, Simple and Reliable Combined Method for G-Banding Mammalian and Human Chromosomes. Biotechnic & Histochemistry, 1986, 61, 257-260.	0.4	42
81	Karyotype and Chromosome Banding in the Mole (<i>Talpa Occidentalis</i>) from the South-East of the Iberian Peninsula. Implications on its Taxonomic Position. Caryologia, 1984, 37, 253-258.	0.3	29
82	Meiotic behaviour of sex chromosomes and polymeiosis in three species of insectivores. Genetica, 1984, 65, 187-192.	1,1	9
83	About the Karyotype Of <i>Microtus Nivalis</i> Martins (Rodentia, Microtinae). Caryologia, 1981, 34, 377-383	0.3	9