Barry R Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310244/publications.pdf

Version: 2024-02-01

57	2,393	22	37
papers	citations	h-index	g-index
58	58	58	2771
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of Data-Driven Metrics for Balance Impairment and Fall Risk Assessment in Older Adults. IEEE Transactions on Biomedical Engineering, 2022, 69, 2324-2332.	4.2	11
2	Predicting Fall Counts Using Wearable Sensors: A Novel Digital Biomarker for Parkinson's Disease. Sensors, 2022, 22, 54.	3.8	9
3	Estimating balance, cognitive function, and falls risk using wearable sensors and the sit-to-stand test. Wearable Technologies, 2022, 3, .	3.1	O
4	Detecting subtle mobility changes among older adults: the Quantitative Timed Up and Go test. Aging Clinical and Experimental Research, 2021, 33, 2157-2164.	2.9	5
5	Reliability of inertial sensor based spatiotemporal gait parameters for short walking bouts in community dwelling older adults. Gait and Posture, 2021, 85, 1-6.	1.4	8
6	Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning. Sensors, 2021, 21, 4770.	3.8	13
7	Short Bouts of Gait Data and Body-Worn Inertial Sensors Can Provide Reliable Measures of Spatiotemporal Gait Parameters from Bilateral Gait Data for Persons with Multiple Sclerosis. Biosensors, 2020, 10, 128.	4.7	6
8	How many steps to represent individual gait?. , 2020, , .		4
9	Human Movement Analysis: Introduction to Motion Capture and Applications for Health. , 2020, , .		O
10	Impact of Exercise Intervention in Parkinson's Disease can be Quantified Using Inertial Sensor Data and Clinical Tests. , 2019, 2019, 3507-3510.		4
11	Investigating normal day to day variations of postural control in a healthy young population using Wii balance boards., 2019, 2019, 2059-2062.		0
12	Digital assessment of falls risk, frailty, and mobility impairment using wearable sensors. Npj Digital Medicine, 2019, 2, 125.	10.9	30
13	Longitudinal assessment of falls in patients with Parkinson's disease using inertial sensors and the Timed Up and Go test. Journal of Rehabilitation and Assistive Technologies Engineering, 2018, 5, 205566831775081.	0.9	16
14	Fall Risk Assessment Through Automatic Combination of Clinical Fall Risk Factors and Body-Worn Sensor Data. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 725-731.	6.3	54
15	Effect of a dual task on quantitative Timed Up and Go performance in communityâ€dwelling older adults: A preliminary study. Geriatrics and Gerontology International, 2017, 17, 1176-1182.	1.5	23
16	The reliability of the quantitative timed up and go test (QTUG) measured over five consecutive days under single and dual-task conditions in community dwelling older adults. Gait and Posture, 2016, 43, 239-244.	1.4	48
17	Stability of daily home-based measures of postural control over an 8-week period in highly functioning older adults. European Journal of Applied Physiology, 2015, 115, 437-449.	2.5	5
18	Assessment and Classification of Early-Stage Multiple Sclerosis With Inertial Sensors: Comparison Against Clinical Measures of Disease State. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1356-1361.	6.3	38

#	Article	IF	CITATIONS
19	Quantitative assessment of multiple sclerosis using inertial sensors and the TUG test., 2014, 2014, 2977-80.		13
20	Classification of frailty and falls history using a combination of sensor-based mobility assessments. Physiological Measurement, 2014, 35, 2053-2066.	2.1	53
21	Frailty status can be accurately assessed using inertial sensors and the TUG test. Age and Ageing, 2014, 43, 406-411.	1.6	71
22	A comparison of cross-sectional and prospective algorithms for falls risk assessment. , 2014, 2014, 4527-30.		12
23	Early identification of declining balance in higher functioning older adults, an inertial sensor based method. Gait and Posture, 2014, 39, 1034-1039.	1.4	20
24	Falls classification using tri-axial accelerometers during the five-times-sit-to-stand test. Gait and Posture, 2013, 38, 1021-1025.	1.4	84
25	Effects of a Low-Volume, Vigorous Intensity Step Exercise Program on Functional Mobility in Middle-Aged Adults. Annals of Biomedical Engineering, 2013, 41, 1748-1757.	2.5	6
26	Evaluation of Falls Risk in Community-Dwelling Older Adults Using Body-Worn Sensors. Gerontology, 2012, 58, 472-480.	2.8	80
27	Diurnal variations in the outcomes of instrumented gait and quiet standing balance assessments and their association with falls history. Physiological Measurement, 2012, 33, 361-373.	2.1	31
28	Taking balance measurement out of the laboratory and into the home: Discriminatory capability of novel centre of pressure measurement in fallers and non-fallers., 2012, 2012, 3296-9.		13
29	Displacement of centre of mass during quiet standing assessed using accelerometry in older fallers and non-fallers., 2012, 2012, 3300-3.		47
30	A Comparison of Algorithms for Body-Worn Sensor-Based Spatiotemporal Gait Parameters to the GAITRite Electronic Walkway. Journal of Applied Biomechanics, 2012, 28, 349-355.	0.8	37
31	Gyroscope-based assessment of temporal gait parameters during treadmill walking and running. Sports Engineering, 2012, 15, 207-213.	1.1	52
32	Quantitative falls risk estimation through multi-sensor assessment of standing balance. Physiological Measurement, 2012, 33, 2049-2063.	2.1	49
33	Assessment of Cognitive Decline Through Quantitative Analysis of the Timed Up and Go Test. IEEE Transactions on Biomedical Engineering, 2012, 59, 988-995.	4.2	37
34	Clinical gait assessment of older adults using open platform tools., 2011, 2011, 462-5.		3
35	Reliability of quantitative TUG measures of mobility for use in falls risk assessment., 2011, 2011, 466-9.		14
36	Technology Innovation Enabling Falls Risk Assessment in a Community Setting. Ageing International, 2011, 36, 217-231.	1.3	30

#	Article	IF	Citations
37	Estimation of minimum ground clearance (MGC) using body-worn inertial sensors. Journal of Biomechanics, 2011, 44, 1083-1088.	2.1	32
38	Body-worn sensor based surrogates of minimum ground clearance in elderly fallers and controls., 2011, 2011, 6499-502.		8
39	Development and validation of a clinic based balance assessment technology., 2011, 2011, 1327-30.		2
40	An instrumented sit-to-stand test used to examine differences between older fallers and non-fallers., 2011, 2011, 3063-6.		35
41	An adaptive gyroscope-based algorithm for temporal gait analysis. Medical and Biological Engineering and Computing, 2010, 48, 1251-1260.	2.8	160
42	Quantitative Falls Risk Assessment Using the Timed Up and Go Test. IEEE Transactions on Biomedical Engineering, 2010, 57, 2918-2926.	4.2	202
43	SHIMMER™: An extensible platform for physiological signal capture. , 2010, 2010, 3759-62.		38
44	Adaptive estimation of temporal gait parameters using body-worn gyroscopes., 2010, 2010, 1296-9.		18
45	SHIMMER™ – A Wireless Sensor Platform for Noninvasive Biomedical Research. IEEE Sensors Journal, 2010, 10, 1527-1534.	4.7	471
46	A single gyroscope method for spatial gait analysis. , 2010, 2010, 1300-3.		33
47	Objective real-time assessment of walking and turning in elderly adults. , 2009, 2009, 807-10.		15
48	SHIMMER: A new tool for long-term, extra-laboratory gait monitoring. Gait and Posture, 2009, 30, S25-S26.	1.4	6
49	EEG in the healthy term newborn within 12 hours of birth. Clinical Neurophysiology, 2009, 120, 1046-1053.	1.5	52
50	SHIMMER: A new tool for temporal gait analysis. , 2009, 2009, 3826-9.		41
51	Can state or response entropy be used as a measure of sleep depth?. Anaesthesia, 2008, 63, 1309-1313.	3.8	6
52	A comparison of quantitative EEG features for neonatal seizure detection. Clinical Neurophysiology, 2008, 119, 1248-1261.	1.5	186
53	Combination of EEG and ECG for improved automatic neonatal seizure detection. Clinical Neurophysiology, 2007, 118, 1348-1359.	1.5	94
54	Electrocardiogram Based Neonatal Seizure Detection. IEEE Transactions on Biomedical Engineering, 2007, 54, 673-682.	4.2	46

#	Article	IF	CITATIONS
55	Heart and respiration rate changes in the neonate during electroencephalographic seizure. Medical and Biological Engineering and Computing, 2006, 44, 27-34.	2.8	15
56	Multi-channel EEG based Neonatal Seizure Detection. , 2006, 2006, 4679-84.		6
57	Multi-channel EEG based Neonatal Seizure Detection. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	O