Nina L Lanza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310178/publications.pdf

Version: 2024-02-01

52 papers	6,109 citations	94433 37 h-index	197818 49 g-index
59 all docs	59 docs citations	59 times ranked	3390 citing authors

#	Article	IF	CITATIONS
1	Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.	2.9	40
2	Bedrock Geochemistry and Alteration History of the Clayâ€Bearing Glen Torridon Region of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	17
3	In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.	27.8	30
4	Overview of the Morphology and Chemistry of Diagenetic Features in the Clayâ€Rich Glen Torridon Unit of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	17
5	The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Science Reviews, 2021, 217, 1.	8.1	131
6	Origin of Life on Mars: Suitability and Opportunities. Life, 2021, 11, 539.	2.4	18
7	An ecophysiological explanation for manganese enrichment in rock varnish. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
8	Quantification of manganese for ChemCam Mars and laboratory spectra using a multivariate model. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106223.	2.9	16
9	The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests. Space Science Reviews, 2021, 217, 4.	8.1	160
10	Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006299.	3.6	30
11	Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars. Icarus, 2020, 350, 113897.	2.5	11
12	The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006320.	3.6	41
13	Elemental Analyses of Mars from Rovers with Laser-Induced Breakdown Spectroscopy by ChemCam and SuperCam., 2019,, 573-587.		O
14	Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus, 2019, 321, 736-751.	2.5	23
15	Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.	4.0	40
16	Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical Research Letters, 2017, 44, 4716-4724.	4.0	87
17	Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. Journal of Geophysical Research E: Planets, 2017, 122, 650-679.	3.6	48
18	Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2-20.	3.6	60

#	Article	IF	Citations
19	In situ detection of boron by ChemCam on Mars. Geophysical Research Letters, 2017, 44, 8739-8748.	4.0	56
20	Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162.	3.6	46
21	Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophysical Research Letters, 2016, 43, 7398-7407.	4.0	110
22	Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 338-352.	3.6	32
23	The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> Journal of Geophysical Research E: Planets, 2016, 121, 784-804.	3.6	67
24	ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.	3.0	134
25	Discovering compositional trends in Mars rock targets from ChemCam spectroscopy and remote imaging. , 2015, , .		0
26	Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.	3.6	51
27	First detection of fluorine on Mars: Implications for Gale Crater's geochemistry. Geophysical Research Letters, 2015, 42, 1020-1028.	4.0	107
28	In situ evidence for continental crust on early Mars. Nature Geoscience, 2015, 8, 605-609.	12.9	233
29	Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 2015, 249, 22-42.	2.5	64
30	Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data. Icarus, 2015, 249, 62-73.	2.5	49
31	ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 2015, 249, 2-21.	2.5	52
32	High manganese concentrations in rocks at Gale crater, Mars. Geophysical Research Letters, 2014, 41, 5755-5763.	4.0	81
33	Trace element geochemistry (Li, Ba, Sr, and Rb) using <i>Curiosity</i> 's ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 255-285.	3.6	86
34	A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1242777.	12.6	687
35	Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.	12.6	508
36	Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.	12.6	246

#	Article	IF	Citations
37	The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 1374-1389.	3.6	46
38	Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research E: Planets, 2014, 119, 2109-2131.	3.6	48
39	Chemistry of fractureâ€filling raised ridges in Yellowknife Bay, Gale Crater: Window into past aqueous activity and habitability on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2398-2415.	3.6	70
40	Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 82, 1-27.	2.9	258
41	X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 2013, 341, 1238932.	12.6	327
42	Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.	12.6	280
43	Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.	12.6	367
44	Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.	12.6	326
45	The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.	12.6	134
46	Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.	12.6	215
47	Examining natural rock varnish and weathering rinds with laser-induced breakdown spectroscopy for application to ChemCam on Mars. Applied Optics, 2012, 51, B74.	1.8	49
48	Ceramic ChemCam Calibration Targets on Mars Science Laboratory. Space Science Reviews, 2012, 170, 229-255.	8.1	52
49	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Science Reviews, 2012, 170, 167-227.	8.1	429
50	The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests., 2012,, 167-227.		6
51	Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus, 2010, 205, 64-72.	2.5	38
52	Phyllosilicate and sulfateâ€hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophysical Research Letters, 2008, 35, .	4.0	63