
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9310007/publications.pdf Version: 2024-02-01

DETED C INNIS

#	Article	IF	CITATIONS
1	High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles. ACS Nano, 2014, 8, 2456-2466.	14.6	331
2	Graphene oxide dispersions: tuning rheology to enable fabrication. Materials Horizons, 2014, 1, 326-331.	12.2	276
3	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015, 7, 21150-21158.	8.0	267
4	Strainâ€Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity. Advanced Functional Materials, 2014, 24, 2957-2966.	14.9	238
5	Monolithic Actuators from Flashâ€Welded Polyaniline Nanofibers. Advanced Materials, 2008, 20, 155-158.	21.0	167
6	One‣tep Wet‣pinning Process of Poly(3,4â€ethylenedioxythiophene):Poly(styrenesulfonate) Fibers and the Origin of Higher Electrical Conductivity. Advanced Functional Materials, 2011, 21, 3363-3370.	14.9	158
7	Fibronectin and Bovine Serum Albumin Adsorption and Conformational Dynamics on Inherently Conducting Polymers: A QCM-D Study. Langmuir, 2012, 28, 8433-8445.	3.5	134
8	Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions. Current Applied Physics, 2004, 4, 402-406.	2.4	100
9	Achieving Outstanding Mechanical Performance in Reinforced Elastomeric Composite Fibers Using Large Sheets of Graphene Oxide. Advanced Functional Materials, 2015, 25, 94-104.	14.9	93
10	Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond–Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Applied Materials & Interfaces, 2019, 11, 4353-4363.	8.0	73
11	Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. Journal of Materials Chemistry B, 2014, 2, 793-799.	5.8	70
12	Inherently Conducting Polymer Nanostructures. Journal of Nanoscience and Nanotechnology, 2002, 2, 441-451.	0.9	68
13	TITAN: a conducting polymer based microfluidic pump. Smart Materials and Structures, 2005, 14, 1511-1516.	3.5	67
14	Electrochemical Formation of Chiral Polyaniline Colloids Codoped with (+)- or (â^')-10-Camphorsulfonic Acid and Polystyrene Sulfonate. Macromolecules, 1998, 31, 6521-6528.	4.8	66
15	Enhanced electrochemical stability of polyaniline in ionic liquids. Current Applied Physics, 2004, 4, 389-393.	2.4	60
16	Putting function into fashion: Organic conducting polymer fibres and textiles. Fibers and Polymers, 2007, 8, 135-142.	2.1	60
17	Technical Review : Conducting Polymer Electronics. Journal of Intelligent Material Systems and Structures, 1992, 3, 380-395.	2.5	56
18	Electronic interactions within composites of polyanilines formed under acidic and alkaline conditions. Conductivity, ESR, Raman, UV-vis and fluorescence studies. Physical Chemistry Chemical Physics, 2011, 13, 3303.	2.8	52

#	Article	IF	CITATIONS
19	EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. Physical Chemistry Chemical Physics, 2010, 12, 4135.	2.8	49
20	Optically Active Polymer Carbon Nanotube Composite. Journal of Physical Chemistry B, 2005, 109, 22725-22729.	2.6	47
21	A facile approach to spinning multifunctional conductive elastomer fibres with nanocarbon fillers. Smart Materials and Structures, 2016, 25, 035015.	3.5	45
22	Conducting Polymer Electrochemistry in Ionic Liquids Synthetic Metals, 2003, 135-136, 31-32.	3.9	44
23	The influence of electrolyte pH on the surface morphology of polypyrrole. Synthetic Metals, 1992, 53, 59-69.	3.9	43
24	Determination of the thermal conductivity of polypyrrole over the temperature range 280–335 K. Journal of Materials Science, 1993, 28, 5092-5098.	3.7	40
25	Enhanced physicochemical properties of polydimethylsiloxane based microfluidic devices and thin films by incorporating synthetic micro-diamond. Scientific Reports, 2017, 7, 15109.	3.3	39
26	Nanocomposites of Polyaniline/Poly(2-methoxyaniline-5-sulfonic acid). Macromolecular Rapid Communications, 2006, 27, 1995-2000.	3.9	38
27	Biocompatibility of Immobilized Aligned Carbon Nanotubes. Small, 2011, 7, 1035-1042.	10.0	38
28	Facile Development of a Fiber-Based Electrode for Highly Selective and Sensitive Detection of Dopamine. ACS Sensors, 2019, 4, 2599-2604.	7.8	38
29	Life-Saving Threads: Advances in Textile-Based Analytical Devices. ACS Combinatorial Science, 2019, 21, 229-240.	3.8	38
30	Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid. Synthetic Metals, 2000, 114, 267-272.	3.9	37
31	A new twist: controlled shape-shifting of silver nanoparticles from prisms to discs. Journal of Materials Chemistry, 2009, 19, 8294.	6.7	37
32	Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Advanced Materials Interfaces, 2016, 3, 1500672.	3.7	37
33	Colouration efficiency measurements in electrochromic polymers: The importance of charge density. Electrochemistry Communications, 2007, 9, 2032-2036.	4.7	34
34	The citrate-mediated shape evolution of transforming photomorphic silver nanoparticles. Chemical Communications, 2010, 46, 7807.	4.1	34
35	Electrosynthesis and characterisation of poly(2-methoxyaniline-5-sulfonic acid)-effect of pH control. Synthetic Metals, 2000, 114, 287-293.	3.9	33
36	Purification and characterisation of poly(2-methoxyaniline-5-sulfonicacid acid). Synthetic Metals, 2005, 153, 181-184.	3.9	33

#	Article	IF	CITATIONS
37	Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochimica Acta, 2011, 56, 4408-4413.	5.2	33
38	Preparation of chiral conducting polymer colloids. Synthetic Metals, 1997, 84, 181-182.	3.9	31
39	The mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic) acid using linear-diol additives: Its effect on electrochromic performance. Thin Solid Films, 2008, 516, 7828-7835.	1.8	29
40	The influence of poly(2-methoxyaniline-5-sulfonic acid) on the electrochemical and photochemical properties of a highly luminescent ruthenium complex. Electrochimica Acta, 2008, 53, 4599-4605.	5.2	29
41	Reversible Photoinduced Electron Transfer in a Ruthenium Poly(2-methoxyaniline-5-sulfonic acid) Composite Film. Journal of Physical Chemistry B, 2008, 112, 12907-12912.	2.6	26
42	Processable polyaniline-HCSA/poly(vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study. Electrochimica Acta, 2009, 54, 1483-1490.	5.2	26
43	Polyterthiophene as an electrostimulated controlled drug release material of therapeutic levels of dexamethasone. Synthetic Metals, 2010, 160, 1107-1114.	3.9	26
44	ESR, Raman, and Conductivity Studies on Fractionated Poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 2010, 114, 2337-2341.	2.6	25
45	Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra® textiles. Progress in Organic Coatings, 2013, 76, 1296-1301.	3.9	24
46	Processable Thermally Conductive Polyurethane Composite Fibers. Macromolecular Materials and Engineering, 2019, 304, 1800542.	3.6	24
47	Ion effects in REDOX cycling of conducting polymer based electrochromic materials. Electrochemistry Communications, 2010, 12, 1505-1508.	4.7	22
48	X-ray attenuation properties of electrically insulating barytes/epoxy composites. Journal of Materials Science Letters, 1993, 12, 132-134.	0.5	21
49	Comparative displacement study of bilayer actuators comprising of conducting polymers, fabricated from polypyrrole, poly(3,4-ethylenedioxythiophene) or poly(3,4-propylenedioxythiophene). Sensors and Actuators A: Physical, 2013, 193, 48-53.	4.1	20
50	Conducting Polymers: Properties and Applications. Journal of Intelligent Material Systems and Structures, 1994, 5, 595-604.	2.5	18
51	Faradaic charge corrected colouration efficiency measurements for electrochromic devices. Electrochimica Acta, 2008, 53, 2250-2257.	5.2	18
52	Exploiting Intermolecular Interactions between Alkyl-Functionalized Redox-Active Molecule Pairs to Enhance Interfacial Electron Transfer. Journal of the American Chemical Society, 2018, 140, 13935-13944.	13.7	18
53	Chemical and Photoluminescence Properties of Purified Poly(2-methoxyaniline-5-sulfonic acid) and Oligomer. Journal of Physical Chemistry B, 2007, 111, 12738-12747.	2.6	17
54	Electrohydrodynamic synthesis, characterisation and metal uptake studies on polypyrrole colloids stabilised by polyvinylphosphate dopant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 291-301.	4.7	15

#	Article	IF	CITATIONS
55	Stabilization of Single-Wall Carbon Nanotubes in Fully Sulfonated Polyaniline. Journal of Nanoscience and Nanotechnology, 2004, 4, 976-981.	0.9	15
56	Electrochemical synthesis and characterisation of polyaniline/poly(2-methoxyaniline-5-sulfonic acid) composites. Electrochimica Acta, 2008, 53, 4146-4155.	5.2	15
57	3D printing of highly flexible, cytocompatible nanocomposites for thermal management. Journal of Materials Science, 2021, 56, 6385-6400.	3.7	14
58	Applications of nanomaterials in ambient ionization mass spectrometry. TrAC - Trends in Analytical Chemistry, 2021, 136, 116202.	11.4	14
59	Development and characterisation of polypyrrole/metal junctions for electronic applications. Polymer International, 1991, 26, 245-249.	3.1	13
60	Photolithographic patterning of conducting polyaniline films via flash welding. Synthetic Metals, 2010, 160, 1405-1409.	3.9	13
61	Novel approach to the synthesis of polyaniline possessing electroactivity at neutral pH. Synthetic Metals, 2019, 250, 121-130.	3.9	13
62	Characterisation of graphene fibres and graphene coated fibres using capacitively coupled contactless conductivity detector. Analyst, The, 2016, 141, 2774-2782.	3.5	12
63	Thread-based isoelectric focusing coupled with desorption electrospray ionization mass spectrometry. Analyst, The, 2020, 145, 6928-6936.	3.5	12
64	Influence of biopolymer loading on the physiochemical and electrochemical properties of inherently conducting polymer biomaterials. Synthetic Metals, 2015, 200, 40-47.	3.9	11
65	Thermally drawn biodegradable fibers with tailored topography for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 733-743.	3.4	11
66	Factors affecting the electrochemical formation of polypyrrole-nitrate colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 137, 295-300.	4.7	10
67	Solid State Photochemistry of Novel Composites Containing Luminescent Metal Centers and Poly(2-methoxyaniline-5-sulfonic acid). Journal of Physical Chemistry B, 2009, 113, 7443-7448.	2.6	10
68	Novel Approach toward Electrofluidic Substrates Utilizing Textile-Based Braided Structure. ACS Applied Materials & Interfaces, 2020, 12, 45618-45628.	8.0	10
69	Significant Effect of Electronic Coupling on Electron Transfer between Surface-Bound Porphyrins and Co ^{2+/3+} Complex Electrolytes. Journal of Physical Chemistry C, 2020, 124, 9178-9190.	3.1	10
70	Thread-based isotachophoresis coupled with desorption electrospray ionization mass spectrometry for clean-up, preconcentration, and determination of alkaloids in biological fluids. Analytica Chimica Acta, 2022, 1193, 338810.	5.4	10
71	Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems. Lab on A Chip, 2021, 21, 3979-3990.	6.0	10
72	Asymmetric proliferation with optically active polyanilines. Chemical Communications, 2005, , 4539.	4.1	9

#	Article	IF	CITATIONS
73	3D textile structures with integrated electroactive electrodes for wearable electrochemical sensors. Journal of the Textile Institute, 2020, 111, 1587-1595.	1.9	9
74	Substrate-Dependent Electron-Transfer Rate of Mixed-Ligand Electrolytes: Tuning Electron-Transfer Rate without Changing Driving Force. Journal of the American Chemical Society, 2021, 143, 488-495.	13.7	9
75	Inherently Conducting Polymer Nanostructures. Journal of Nanoscience and Nanotechnology, 2002, 2, 441-451.	0.9	9
76	Electrohydrodynamic synthesis of polypyrrole coated polyurethane colloidal dispersions using the electrocatalyst Tiron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 1-12.	4.7	8
77	Asymmetry and rectification in the tunnel current of a nanometer-sized metal-conjugated polymer–metal junction. Journal of Chemical Physics, 2000, 112, 6774-6778.	3.0	7
78	Colour tunable electrochromic devices based on PProDOT-(Hx)2 and PProDOT-(EtHx)2 polymers. Journal of Materials Chemistry C, 2013, 1, 7430.	5.5	7
79	Fused filament fabrication 3D printed polylactic acid electroosmotic pumps. Lab on A Chip, 2021, 21, 3338-3351.	6.0	7
80	Electrohydrodynamic polymerisation of water-soluble poly((4-(3-pyrrolyl))butane sulfonate). Polymer, 2000, 41, 4065-4076.	3.8	5
81	Nanomaterial-assisted thread-based isotachophoresis with on-thread solute trapping. Analyst, The, 2022, 147, 1944-1951.	3.5	5
82	Design of selfâ€assembled TiO ₂ architectures: Towards hybrid nanotubular interfaces. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 938-945.	1.8	4
83	Microstructures of conducting polymers: Patterning and actuation study. Sensors and Actuators A: Physical, 2013, 197, 106-110.	4.1	3
84	The impact of insufficient time resolution on dye regeneration lifetime determined using transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 13001-13010.	2.8	3
85	Controlled Continuous Production of Conducting Polypyrrole Tapes I: Process Control Development. Polymers for Advanced Technologies, 1996, 7, 442-450.	3.2	2
86	Sensors: Strain-Responsive Polyurethane/PEDOT:PSS Elastomeric Composite Fibers with High Electrical Conductivity (Adv. Funct. Mater. 20/2014). Advanced Functional Materials, 2014, 24, 3104-3104.	14.9	2
87	Field-Cycling NMR Relaxometry Study of Dynamic Processes in Conducting Polyaniline. Journal of Physical Chemistry C, 2008, 112, 17688-17693.	3.1	1
88	Melt polymer drawn single and multi-capillary fibre-based electroosmotic pumps. Microfluidics and Nanofluidics, 2022, 26, .	2.2	1
89	Graphene Oxide: Achieving Outstanding Mechanical Performance in Reinforced Elastomeric Composite Fibers Using Large Sheets of Graphene Oxide (Adv. Funct. Mater. 1/2015). Advanced Functional Materials, 2015, 25, 168-168.	14.9	0
90	Tunable flow rate in textile-based materials utilising composite fibres. Journal of the Textile Institute, 2021, 112, 568-577.	1.9	0