
Dylan J Taatjes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9309621/publications.pdf Version: 2024-02-01

DVIAN LTAATIES

#	Article	IF	CITATIONS
1	Mediator and cohesin connect gene expression and chromatin architecture. Nature, 2010, 467, 430-435.	27.8	1,707
2	Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell, 2018, 175, 1842-1855.e16.	28.9	1,195
3	Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature, 2013, 494, 497-501.	27.8	759
4	The Mediator complex: a central integrator of transcription. Nature Reviews Molecular Cell Biology, 2015, 16, 155-166.	37.0	707
5	PolÂll phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, 2019, 572, 543-548.	27.8	457
6	Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature, 2015, 526, 273-276.	27.8	307
7	CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nature Structural and Molecular Biology, 2010, 17, 194-201.	8.2	303
8	The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes and Development, 2009, 23, 439-451.	5.9	290
9	The human Mediator complex: a versatile, genome-wide regulator of transcription. Trends in Biochemical Sciences, 2010, 35, 315-322.	7.5	281
10	Partitioning of cancer therapeutics in nuclear condensates. Science, 2020, 368, 1386-1392.	12.6	281
11	CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response. Immunity, 2013, 38, 250-262.	14.3	220
12	The Human CDK8 Subcomplex Is a Histone Kinase That Requires Med12 for Activity and Can Function Independently of Mediator. Molecular and Cellular Biology, 2009, 29, 650-661.	2.3	193
13	Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes. Molecular Cell, 2019, 76, 753-766.e6.	9.7	188
14	Structure and mechanism of the RNA polymerase II transcription machinery. Genes and Development, 2020, 34, 465-488.	5.9	167
15	Regulatory diversity among metazoan co-activator complexes. Nature Reviews Molecular Cell Biology, 2004, 5, 403-410.	37.0	137
16	TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release. Nature Structural and Molecular Biology, 2014, 21, 876-883.	8.2	125
17	Human TFIIH Kinase CDK7 Regulates Transcription-Associated Chromatin Modifications. Cell Reports, 2017, 20, 1173-1186.	6.4	123
18	ldentification of Mediator Kinase Substrates in Human Cells using Cortistatin A and Quantitative Phosphoproteomics. Cell Reports, 2016, 15, 436-450.	6.4	117

Dylan J Taatjes

#	Article	IF	CITATIONS
19	Redox Pathway Leading to the Alkylation of DNA by the Anthracycline, Antitumor Drugs Adriamycin and Daunomycin. Journal of Medicinal Chemistry, 1997, 40, 1276-1286.	6.4	114
20	The SCF–Fbw7 ubiquitin ligase degrades MED13 and MED13L and regulates CDK8 module association with Mediator. Genes and Development, 2013, 27, 151-156.	5.9	96
21	Activator-Mediator binding regulates Mediator-cofactor interactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11283-11288.	7.1	92
22	Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH. Molecular Cell, 2015, 59, 794-806.	9.7	91
23	The essential and multifunctional TFIIH complex. Protein Science, 2018, 27, 1018-1037.	7.6	88
24	Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription, 2019, 10, 76-90.	3.1	79
25	Backtracked and paused transcription initiation intermediate of <i>Escherichia coli</i> RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6562-E6571.	7.1	78
26	Doxoform and Daunoform:  Anthracyclineâ^'Formaldehyde Conjugates Toxic to Resistant Tumor Cells. Journal of Medicinal Chemistry, 1997, 40, 2452-2461.	6.4	71
27	The Mediator complex as a master regulator of transcription by RNA polymerase II. Nature Reviews Molecular Cell Biology, 2022, 23, 732-749.	37.0	71
28	The complex structure and function of Mediator. Journal of Biological Chemistry, 2018, 293, 13778-13785.	3.4	65
29	A Kinase-Independent Role for Cyclin-Dependent Kinase 19 in p53 Response. Molecular and Cellular Biology, 2017, 37, .	2.3	57
30	TFIID Enables RNA Polymerase II Promoter-Proximal Pausing. Molecular Cell, 2020, 78, 785-793.e8.	9.7	55
31	Transcriptional Responses to IFN-Î ³ Require Mediator Kinase-Dependent Pause Release and Mechanistically Distinct CDK8 and CDK19 Functions. Molecular Cell, 2019, 76, 485-499.e8.	9.7	52
32	Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription. Genes and Development, 2020, 34, 1452-1473.	5.9	47
33	Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. Journal of Molecular Biology, 2022, 434, 167216.	4.2	44
34	The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Scientific Reports, 2019, 9, 6539.	3.3	42
35	Nuclear Targeting and Nuclear Retention of Anthracyclineâ^'Formaldehyde Conjugates Implicates DNA Covalent Bonding in the Cytotoxic Mechanism of Anthracyclines. Chemical Research in Toxicology, 1999, 12, 588-596.	3.3	37
36	The Continuing SAGA of TFIID and RNA Polymerase II Transcription. Molecular Cell, 2017, 68, 1-2.	9.7	31

Dylan J Taatjes

#	Article	IF	CITATIONS
37	The Mediator kinase module: an interface between cell signaling and transcription. Trends in Biochemical Sciences, 2022, 47, 314-327.	7.5	26
38	Epidoxoform:  A Hydrolytically More Stable Anthracyclineâ^'Formaldehyde Conjugate Toxic to Resistant Tumor Cells. Journal of Medicinal Chemistry, 1998, 41, 1306-1314.	6.4	22
39	Transcription factor enrichment analysis (TFEA) quantifies the activity of multiple transcription factors from a single experiment. Communications Biology, 2021, 4, 661.	4.4	21
40	The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function. Aging Cell, 2013, 12, 863-872.	6.7	14
41	The Δ40p53 isoform inhibits p53-dependent eRNA transcription and enables regulation by signal-specific transcription factors during p53 activation. PLoS Biology, 2021, 19, e3001364.	5.6	14
42	Studying transcription initiation by RNA polymerase with diffusionâ€based singleâ€molecule fluorescence. Protein Science, 2017, 26, 1278-1290.	7.6	13
43	Everything at once: cryo-EM yields remarkable insights into human RNA polymerase II transcription. Nature Structural and Molecular Biology, 2021, 28, 540-543.	8.2	8
44	The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning. Journal of Molecular Biology, 2021, 433, 166813.	4.2	8
45	Smallâ€Molecule Probes to Target the Human Mediator Complex. Israel Journal of Chemistry, 2013, 53, 588-595.	2.3	7
46	Chemical Synthesis of the Multiply Phosphorylated and Biotinylated N-Terminal Transactivation Domain of Human p53 (p53TAD). Synlett, 2017, 28, 1917-1922.	1.8	6
47	Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Reports, 2022, 39, 110630.	6.4	5
48	Mediator redefines itself. Cell Research, 2014, 24, 775-776.	12.0	3
49	All in the Family: A Portrait of a Nuclear Receptor Co-Activator Complex. Molecular Cell, 2015, 57, 952-954.	9.7	3
50	Mediating transcription and RNA export. Nature, 2015, 526, 199-200.	27.8	3
51	Transcription Factor–Mediator Interfaces: Multiple and Multi-Valent. Journal of Molecular Biology, 2017, 429, 2996-2998.	4.2	3
52	RNA Polymerase II Transcription. Journal of Molecular Biology, 2021, 433, 167037.	4.2	3
53	Macromolecular Complexes in Transcription and Co-Transcriptional RNA Processing. Journal of Molecular Biology, 2016, 428, 2539-2541.	4.2	1
54	Mediator coâ€activator function is controlled by activatorâ€induced structural shifts. FASEB Journal, 2010, 24, 679.4.	0.5	0

#	ARTICLE	IF	CITATIONS
55	CDK8 is a positive regulator of transcriptional elongation within the serum response network FASEB Journal, 2010, 24, 456.5.	0.5	Ο
56	Structure and Mechanism of the human Transcription Initiation Machinery. FASEB Journal, 2012, 26, 227.1.	0.5	0