Michael J Havey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9309297/publications.pdf Version: 2024-02-01

MICHAEL HAVEY

#	Article	IF	CITATIONS
1	Chromosome rearrangements during domestication of cucumber as revealed by highâ€density genetic mapping and draft genome assembly. Plant Journal, 2012, 71, 895-906.	5.7	177
2	Cytogenomic Analyses Reveal the Structural Plasticity of the Chloroplast Genome in Higher Plants. Plant Cell, 2001, 13, 245-254.	6.6	125
3	RFLP variation and genetic relationships in cultivated cucumber. Euphytica, 1996, 90, 79-87.	1.2	87
4	A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome, 2000, 43, 1003-1010.	2.0	71
5	Small, Repetitive DNAs Contribute Significantly to the Expanded Mitochondrial Genome of Cucumber. Genetics, 2001, 159, 317-328.	2.9	64
6	Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Current Genetics, 2004, 45, 45-53.	1.7	51
7	QTL affecting soluble carbohydrate concentrations in stored onion bulbs and their association with flavor and health-enhancing attributes. Genome, 2004, 47, 463-468.	2.0	47
8	A major deletion in the cucumber mitochondrial genome sorts with the MSC phenotype. Current Genetics, 2001, 40, 144-151.	1.7	46
9	Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome, 2013, 56, 737-742.	2.0	42
10	QTL mapping of parthenocarpic fruit set in North American processing cucumber. Theoretical and Applied Genetics, 2016, 129, 2387-2401.	3.6	42
11	Cucumber: a model angiosperm for mitochondrial transformation?. Journal of Applied Genetics, 2002, 43, 1-17.	1.9	31
12	The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture — a method to obtain plant mitochondrial mutants. Journal of Applied Genetics, 2007, 48, 1-9.	1.9	27
13	On the origin and distribution of normal cytoplasm of onion. Genetic Resources and Crop Evolution, 1997, 44, 307-313.	1.6	23
14	Genetic analyses of anthocyanin concentrations and intensity of red bulb color among segregating haploid progenies of onion. Molecular Breeding, 2014, 34, 75-85.	2.1	23
15	High-resolution tyramide-FISH mapping of markers tightly linked to the male-fertility restoration (Ms) locus of onion. Theoretical and Applied Genetics, 2016, 129, 535-545.	3.6	21
16	Evaluation of Gynogenic Responsiveness and Pollen Viability of Selfed Doubled Haploid Onion Lines and Chromosome Doubling via Somatic Regeneration. Journal of the American Society for Horticultural Science, 2010, 135, 67-73.	1.0	21
17	Quantitative Trait Loci Controlling Amounts and Types of Epicuticular Waxes in Onion. Journal of the American Society for Horticultural Science, 2014, 139, 597-602.	1.0	21
18	Restriction fragment length polymorphisms reveal considerable nuclear divergence within a wellâ€supported maternal clade in <i>allium</i> section <i>Cepa</i> (Alliaceae). American Journal of Botany, 1995, 82, 1455-1462.	1.7	20

MICHAEL J HAVEY

#	Article	IF	CITATIONS
19	Assembly and characterisation of a unique onion diversity set identifies resistance to Fusarium basal rot and improved seedling vigour. Theoretical and Applied Genetics, 2019, 132, 3245-3264.	3.6	20
20	In vitro flowering and production of viable pollen of cucumber. Plant Cell, Tissue and Organ Culture, 2012, 109, 73-82.	2.3	19
21	Tolerance in Cucumber to Cucurbit yellow stunting disorder virus. Plant Disease, 2006, 90, 645-649.	1.4	18
22	Copy numbers of mitochondrial genes change during melon leaf development and are lower than the numbers of mitochondria. Horticulture Research, 2019, 6, 95.	6.3	18
23	Diallel Crossing Among Doubled Haploids of Cucumber Reveals Significant Reciprocal-cross Differences. Journal of the American Society for Horticultural Science, 2015, 140, 178-182.	1.0	11
24	Cucumber Possesses a Single Terminal Alternative Oxidase Gene That is Upregulated by Cold Stress and in the Mosaic (MSC) Mitochondrial Mutants. Plant Molecular Biology Reporter, 2015, 33, 1893-1906.	1.8	10
25	Application of Genomic Technologies to Crop Plants. Crop Science, 2004, 44, 1893-1895.	1.8	9
26	The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts. G3: Genes, Genomes, Genetics, 2015, 5, 1211-1221.	1.8	9
27	Selection at the Ms locus in open pollinated onion (Allium cepa L.) populations possessing S-cytoplasm or mixtures of N- and S-cytoplasms. Genetic Resources and Crop Evolution, 2006, 53, 1495-1499.	1.6	8
28	Persistence and Protection of Mitochondrial DNA in the Generative Cell of Cucumber is Consistent with its Paternal Transmission. Plant and Cell Physiology, 2015, 56, pcv140.	3.1	8
29	Tyramide-FISH mapping of single genes for development of an integrated recombination and cytogenetic map of chromosome 5 of Allium cepa. Genome, 2015, 58, 111-119.	2.0	8
30	A genetic study of unilateral incompatibility between diploid (1EBN) Mexican species Solanum pinnatisectum and S. cardiophyllum subsp. cardiophyllum. Sexual Plant Reproduction, 2002, 14, 305-313.	2.2	7
31	Cytological Evaluations of Advanced Generations of Interspecific Hybrids Between Allium cepa and Allium fistulosum Showing Resistance to Stemphylium vesicarium. Genes, 2019, 10, 195.	2.4	7
32	Restriction Fragment Length Polymorphisms Reveal Considerable Nuclear Divergence within a Well-Supported Maternal Clade in Allium Section Cepa (Alliaceae). American Journal of Botany, 1995, 82, 1455.	1.7	7
33	Reflectance Spectroscopy for Non-Destructive Measurement and Genetic Analysis of Amounts and Types of Epicuticular Waxes on Onion Leaves. Molecules, 2020, 25, 3454.	3.8	6
34	Management of Onion Thrips (Thrips tabaci) in Organic Onion Production Using Multiple IPM Tactics. Insects, 2021, 12, 207.	2.2	6
35	Polymorphism in the Chloroplast ATP Synthase Beta-Subunit Is Associated with a Maternally Inherited Enhanced Cold Recovery in Cucumber. Plants, 2021, 10, 1092.	3.5	6
36	Genotyping by sequencing for SNP marker development in onion. Genome, 2020, 63, 607-613.	2.0	6

MICHAEL J HAVEY

#	Article	IF	CITATIONS
37	Genetic Analyses and Mapping of Pink-Root Resistance in Onion. Journal of the American Society for Horticultural Science, 2018, 143, 503-507.	1.0	5
38	Spontaneous polyploidization in cucumber. Theoretical and Applied Genetics, 2017, 130, 1481-1490.	3.6	4
39	Rare maternal and biparental transmission of the cucumber mitochondrial DNA reveals sorting of polymorphisms among progenies. Theoretical and Applied Genetics, 2019, 132, 1223-1233.	3.6	4
40	Genetic Analyses of Resistance to Fusarium Basal Rot in Onion. Horticulturae, 2021, 7, 538.	2.8	4
41	Molecular Analyses and Heterosis in the Vegetables: Can We Breed Them Like Maize?. CSSA Special Publication - Crop Science Society of America, 2015, , 109-116.	0.1	1
42	Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy, 2021, 11, 1908.	3.0	0
43	Evaluation of AFLPs as Tags for the MS Locus in Onion. Hortscience: A Publication of the American Society for Hortcultural Science, 1996, 31, 596c-596.	1.0	0
44	Performance of a semi-glossy onion hybrid in certified organic onion fields infested with Thrips tabaci and bulb-rot causing bacteria. Crop Protection, 2022, 160, 106037.	2.1	0