List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compact elastic objects in general relativity. Physical Review D, 2022, 105, .	4.7	12
2	Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals. Nature Astronomy, 2022, 6, 464-470.	10.1	39
3	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
4	Fundamental Physics in the Gravitational-Wave Era. Nuclear Physics News, 2022, 32, 16-19.	0.4	3
5	Detecting Subsolar-Mass Primordial Black Holes in Extreme Mass-Ratio Inspirals with LISA and Einstein Telescope. Physical Review Letters, 2022, 128, 111104.	7.8	14
6	Ranking Love Numbers for the Neutron Star Equation of State: The Need for Third-Generation Detectors. Physical Review Letters, 2022, 128, 101101.	7.8	24
7	Gravitational waves and kicks from the merger of unequal mass, highly compact boson stars. Physical Review D, 2022, 105, .	4.7	31
8	How to assess the primordial origin of single gravitational-wave events with mass, spin, eccentricity, and deformability measurements. Physical Review D, 2022, 105, .	4.7	22
9	Inspiraling compact objects with generic deformations. Physical Review D, 2022, 105, .	4.7	4
10	Searching for mass-spin correlations in the population of gravitational-wave events: The GWTC-3 case study. Physical Review D, 2022, 105, .	4.7	17
11	Testing the Nature of Dark Compact Objects with Gravitational Waves. , 2022, , 1139-1175.		0
12	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2022, , 1377-1410.		0
13	Multipolar structure of rotating boson stars. Physical Review D, 2022, 105, .	4.7	9
14	Landscape of massive black-hole spectroscopy with LISA and the Einstein Telescope. Physical Review D, 2022, 105, .	4.7	19
15	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
16	Impact and detectability of spin-tidal couplings in neutron star inspirals. Physical Review D, 2022, 106, .	4.7	9
17	Superradiant instabilities by accretion disks in scalar-tensor theories. Physical Review D, 2022, 106, .	4.7	2
18	Constraining High-redshift Stellar-mass Primordial Black Holes with Next-generation Ground-based Gravitational-wave Detectors. Astrophysical Journal Letters, 2022, 933, L41.	8.3	26

#	Article	IF	CITATIONS
19	Black-Hole Superradiance: Searching for Ultralight Bosons with Gravitational Waves. , 2021, , 1-33.		Ο
20	The multipolar structure of fuzzballs. Journal of High Energy Physics, 2021, 2021, 1.	4.7	30
21	Constraining the primordial black hole scenario with Bayesian inference and machine learning: The GWTC-2 gravitational wave catalog. Physical Review D, 2021, 103, .	4.7	89
22	The tune of the Universe: the role of plasma in tests of strong-field gravity. Monthly Notices of the Royal Astronomical Society, 2021, 503, 563-573.	4.4	21
23	Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA. Physical Review Letters, 2021, 126, 101105.	7.8	34
24	Plasma-photon interaction in curved spacetime: Formalism and quasibound states around nonspinning black holes. Physical Review D, 2021, 103, .	4.7	13
25	Electromagnetic signatures of dark photon superradiance. Physical Review D, 2021, 104, .	4.7	22
26	Hidden symmetry between rotational tidal Love numbers of spinning neutron stars. Physical Review D, 2021, 104, .	4.7	6
27	Tidal deformability of dressed black holes and tests of ultralight bosons in extended mass ranges. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 032.	5.4	26
28	Black-hole microstate spectroscopy: Ringdown, quasinormal modes, and echoes. Physical Review D, 2021, 104, .	4.7	32
29	Probing the nature of black holes: Deep in the mHz gravitational-wave sky. Experimental Astronomy, 2021, 51, 1385-1416.	3.7	29
30	Testing the Nature of Dark Compact Objects with Gravitational Waves. , 2021, , 1-37.		6
31	Challenging cosmic censorship in Einstein-Maxwell-scalar theory with numerically simulated gedanken experiments. Physical Review D, 2021, 104, .	4.7	10
32	Extreme mass-ratio inspirals around a spinning horizonless compact object. Physical Review D, 2021, 104, .	4.7	25
33	The minimum testable abundance of primordial black holes at future gravitational-wave detectors. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	5.4	35
34	Plasma-photon interaction in curved spacetime. II. Collisions, thermal corrections, and superradiant instabilities. Physical Review D, 2021, 104, .	4.7	12
35	Assessing the detectability of the secondary spin in extreme mass-ratio inspirals with fully relativistic numerical waveforms. Physical Review D, 2021, 104,	4.7	18
36	Gravitational-wave detectors as particle-physics laboratories: Constraining scalar interactions with a coherent inspiral model of boson-star binaries. Physical Review D, 2020, 102, .	4.7	23

#	Article	IF	CITATIONS
37	Extreme mass ratio inspirals with spinning secondary: A detailed study of equatorial circular motion. Physical Review D, 2020, 102, .	4.7	37
38	Parametrized ringdown spin expansion coefficients: A data-analysis framework for black-hole spectroscopy with multiple events. Physical Review D, 2020, 101, .	4.7	49
39	Tidal heating as a discriminator for horizons in extreme mass ratio inspirals. Physical Review D, 2020, 101, .	4.7	48
40	How does a dark compact object ringdown?. Physical Review D, 2020, 102, .	4.7	55
41	Axisymmetric deformations of neutron stars and gravitational-wave astronomy. Physical Review D, 2020, 102, .	4.7	9
42	Spectroscopy of binary black hole ringdown using overtones and angular modes. Physical Review D, 2020, 102, .	4.7	53
43	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
44	Distinguishing Fuzzballs from Black Holes through Their Multipolar Structure. Physical Review Letters, 2020, 125, 221601.	7.8	51
45	Model independent tests of the Kerr bound with extreme mass ratio inspirals. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135860.	4.1	10
46	Black Hole Superradiant Instability from Ultralight Spin-2 Fields. Physical Review Letters, 2020, 124, 211101.	7.8	62
47	Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart. Astrophysical Journal, 2020, 892, 90.	4.5	33
48	Towards numerical relativity in scalar Gauss-Bonnet gravity: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>3</mml:mn><mml:mo>+</mml:mo><mml:mo>1 decomposition beyond the small-coupling limit. Physical Review D. 2020, 101</mml:mo></mml:math 	4.7	31
49	Ringdown overtones, black hole spectroscopy, and no-hair theorem tests. Physical Review D, 2020, 101,	4.7	60
50	Superradiance. Lecture Notes in Physics, 2020, , .	0.7	60
51	A New Method to Constrain Neutron Star Structure from Quasi-periodic Oscillations. Astrophysical Journal, 2020, 899, 139.	4.5	17
52	Black Hole Superradiance in Astrophysics. Lecture Notes in Physics, 2020, , 199-265.	0.7	0
53	Superradiance in Flat Spacetime. Lecture Notes in Physics, 2020, , 13-37.	0.7	1
54	Superradiance in Black-Hole Physics. Lecture Notes in Physics, 2020, , 39-106.	0.7	0

#	Article	IF	CITATIONS
55	Black Holes and Superradiant Instabilities. Lecture Notes in Physics, 2020, , 107-198.	0.7	Ο
56	From micro to macro and back: probing near-horizon quantum structures with gravitational waves. Classical and Quantum Gravity, 2019, 36, 167001.	4.0	22
57	Axion boson stars. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 061-061.	5.4	56
58	Analytical model for gravitational-wave echoes from spinning remnants. Physical Review D, 2019, 100, .	4.7	52
59	Impact of multiple modes on the black-hole superradiant instability. Physical Review D, 2019, 99, .	4.7	34
60	Testing the nature of dark compact objects: a status report. Living Reviews in Relativity, 2019, 22, 1.	26.7	494
61	Love in extrema ratio. International Journal of Modern Physics D, 2019, 28, 1944001.	2.1	31
62	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
63	Anisotropic stars as ultracompact objects in general relativity. Physical Review D, 2019, 99, .	4.7	84
64	Exotic compact objects with soft hair. Physical Review D, 2019, 99, .	4.7	35
65	Black holes and binary mergers in scalar Gauss-Bonnet gravity: Scalar field dynamics. Physical Review D, 2019, 99, .	4.7	131
66	Ergoregion instability of exotic compact objects: Electromagnetic and gravitational perturbations and the role of absorption. Physical Review D, 2019, 99, .	4.7	64
67	Constraints on millicharged dark matter and axionlike particles from timing of radio waves. Physical Review D, 2019, 100, .	4.7	49
68	Accretion in strong field gravity with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	27
69	Probing Planckian Corrections at the Horizon Scale with LISA Binaries. Physical Review Letters, 2018, 120, 081101.	7.8	95
70	Constraining the mass of dark photons and axion-like particles through black-hole superradiance. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043.	5.4	156
71	Impact of high-order tidal terms on binary neutron-star waveforms. Physical Review D, 2018, 98, .	4.7	38
72	Magnetic tidal Love numbers clarified. Physical Review D, 2018, 98, .	4.7	28

#	Article	IF	CITATIONS
73	Post-Newtonian spin-tidal couplings for compact binaries. Physical Review D, 2018, 98, .	4.7	39
74	The stochastic gravitational-wave background in the absence of horizons. Classical and Quantum Gravity, 2018, 35, 20LT01.	4.0	43
75	On gravitational-wave echoes from neutron-star binary coalescences. Classical and Quantum Gravity, 2018, 35, 15LT01.	4.0	47
76	Analytical template for gravitational-wave echoes: Signal characterization and prospects of detection with current and future interferometers. Physical Review D, 2018, 98, .	4.7	56
77	Publisher's Note: Testing strong-field gravity with tidal Love numbers [Phys. Rev. D 95 , 084014 (2017)]. Physical Review D, 2017, 95, .	4.7	96
78	Gravitational wave searches for ultralight bosons with LIGO and LISA. Physical Review D, 2017, 96, .	4.7	190
79	Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. Physical Review Letters, 2017, 119, 131101.	7.8	151
80	Tests for the existence of black holes through gravitational wave echoes. Nature Astronomy, 2017, 1, 586-591.	10.1	274
81	Exotic compact objects and how to quench their ergoregion instability. Physical Review D, 2017, 96, .	4.7	73
82	Superradiance in rotating stars and pulsar-timing constraints on dark photons. Physical Review D, 2017, 95, .	4.7	37
83	Constraining black holes with light boson hair and boson stars using epicyclic frequencies and quasiperiodic oscillations. Physical Review D, 2017, 95, .	4.7	20
84	Geodesic Models of Quasi-periodic-oscillations as Probes of Quadratic Gravity. Astrophysical Journal, 2017, 843, 25.	4.5	40
85	Gravitational wave signatures of highly compact boson star binaries. Physical Review D, 2017, 96, .	4.7	109
86	Testing strong-field gravity with tidal Love numbers. Physical Review D, 2017, 95, .	4.7	175
87	Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology. Physical Review D, 2017, 96, .	4.7	11
88	Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells. Physical Review D, 2016, 94, .	4.7	62
89	Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation. Journal of High Energy Physics, 2016, 2016, 1.	4.7	11
90	Recent developments in the tidal deformability of spinning compact objects. International Journal of Modern Physics D, 2016, 25, 1641001.	2.1	0

#	Article	IF	CITATIONS
91	Quasinormal modes of relativistic stars and interacting fields. Physical Review D, 2016, 93, .	4.7	21
92	Linear stability of nonbidiagonal black holes in massive gravity. Physical Review D, 2016, 93, .	4.7	13
93	Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?. Physical Review Letters, 2016, 116, 171101.	7.8	495
94	Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: Stability, ringdown, and gravitational-wave emission. Physical Review D, 2016, 94, .	4.7	152
95	Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale. Physical Review D, 2016, 94, .	4.7	347
96	Black holes in Einstein-Gauß-Bonnet-dilaton theory. Proceedings of the International Astronomical Union, 2016, 12, 265-272.	0.0	18
97	Black holes and gravitational waves in models of minicharged dark matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 054-054.	5.4	82
98	PERTURBATIONS OF SPINNING BLACK HOLES: SLOW-ROTATION FRAMEWORK. , 2015, , .		0
99	Tidal deformations of a spinning compact object. Physical Review D, 2015, 92, .	4.7	110
100	Rotating black holes in Einstein-dilaton-Gauss-Bonnet gravity with finite coupling. Physical Review D, 2015, 92, .	4.7	117
101	Binary pulsars as dark-matter probes. Physical Review D, 2015, 92, .	4.7	25
102	Tidal Love numbers of a slowly spinning neutron star. Physical Review D, 2015, 92, .	4.7	84
103	I-Love-Q relations for gravastars and the approach to the black-hole limit. Physical Review D, 2015, 92, .	4.7	54
104	Superradiant instability of the Kerr brane. Journal of High Energy Physics, 2015, 2015, 1.	4.7	5
105	Black holes as particle detectors: evolution of superradiant instabilities. Classical and Quantum Gravity, 2015, 32, 134001.	4.0	183
106	Tensor-multi-scalar theories: relativistic stars and 3 + 1 decomposition. Classical and Quantum Gravity, 2015, 32, 204001.	4.0	58
107	Environmental Effects for Gravitational-wave Astrophysics. Journal of Physics: Conference Series, 2015, 610, 012044.	0.4	59
108	Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity, 2015, 32, 243001.	4.0	943

#	Article	IF	CITATIONS
109	TESTING GRAVITY WITH QUASI-PERIODIC OSCILLATIONS FROM ACCRETING BLACK HOLES: THE CASE OF THE EINSTEIN–DILATON–GAUSS–BONNET THEORY. Astrophysical Journal, 2015, 801, 115.	4.5	63
110	Superradiance. Lecture Notes in Physics, 2015, , .	0.7	451
111	Evidence for event horizons: Long-lived modes in ultracompact objects. International Journal of Modern Physics D, 2015, 24, 1542023.	2.1	1
112	Superradiance in Black Hole Physics. Lecture Notes in Physics, 2015, , 35-95.	0.7	5
113	Black Holes and Superradiant Instabilities. Lecture Notes in Physics, 2015, , 97-155.	0.7	1
114	Black Hole Superradiance in Astrophysics. Lecture Notes in Physics, 2015, , 157-211.	0.7	2
115	GRAVITATIONAL FIELDS WITH SOURCES, REGULAR BLACK HOLES, QUASIBLACK HOLES, AND ANALOGUE BLACK HOLES. , 2015, , .		0
116	Superradiance in Flat Spacetime. Lecture Notes in Physics, 2015, , 11-33.	0.7	0
117	Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Physical Review D, 2014, 90, .	4.7	198
118	Can environmental effects spoil precision gravitational-wave astrophysics?. Physical Review D, 2014, 89, .	4.7	321
119	Superradiant instability of black holes immersed in a magnetic field. Physical Review D, 2014, 89, .	4.7	44
120	On generic parametrizations of spinning black-hole geometries. Physical Review D, 2014, 89, .	4.7	81
121	Study of the nonlinear instability of confined geometries. Physical Review D, 2014, 90, .	4.7	24
122	Collapse of self-interacting fields in asymptotically flat spacetimes: Do self-interactions render Minkowski spacetime unstable?. Physical Review D, 2014, 89, .	4.7	24
123	Slowly rotating neutron stars in scalar-tensor theories. Physical Review D, 2014, 90, .	4.7	117
124	Holographic collisions in confining theories. Journal of High Energy Physics, 2014, 2014, 1.	4.7	10
125	Tidal capture of a primordial black hole by a neutron star: implications for constraints on dark matter. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 026-026.	5.4	55
126	Infrared behavior of scalar condensates in effective holographic theories. Journal of High Energy Physics, 2013, 2013, 1.	4.7	7

#	Article	IF	CITATIONS
127	ADVANCED METHODS IN BLACK-HOLE PERTURBATION THEORY. International Journal of Modern Physics A, 2013, 28, 1340018.	1.5	124
128	Black holes with massive graviton hair. Physical Review D, 2013, 88, .	4.7	66
129	Gravity with auxiliary fields. Physical Review D, 2013, 88, .	4.7	38
130	Black Holes with Surrounding Matter in Scalar-Tensor Theories. Physical Review Letters, 2013, 111, 111101.	7.8	112
131	INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER. Astrophysical Journal, 2013, 774, 48.	4.5	135
132	Tidal acceleration of black holes and superradiance. Classical and Quantum Gravity, 2013, 30, 045011.	4.0	35
133	Gravitoelectromagnetic Perturbations of Kerr-Newman Black Holes: Stability and Isospectrality in the Slow-Rotation Limit. Physical Review Letters, 2013, 110, 241103.	7.8	65
134	Massive spin-2 fields on black hole spacetimes: Instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass. Physical Review D, 2013, 88, .	4.7	201
135	Equation-of-state-independent relations in neutron stars. Physical Review D, 2013, 88, .	4.7	133
136	Matter around Kerr black holes in scalar-tensor theories: Scalarization and superradiant instability. Physical Review D, 2013, 88, .	4.7	92
137	Astrophysical signatures of boson stars: Quasinormal modes and inspiral resonances. Physical Review D, 2013, 88, .	4.7	106
138	Scalar, electromagnetic, and gravitational perturbations of Kerr-Newman black holes in the slow-rotation limit. Physical Review D, 2013, 88, .	4.7	60
139	Partially massless gravitons do not destroy general relativity black holes. Physical Review D, 2013, 87, .	4.7	27
140	Constraining primordial black-hole bombs through spectral distortions of the cosmic microwave background. Physical Review D, 2013, 88, .	4.7	51
141	Tidal effects around higher-dimensional black holes. Physical Review D, 2012, 86, .	4.7	12
142	Perturbations of slowly rotating black holes: Massive vector fields in the Kerr metric. Physical Review D, 2012, 86, .	4.7	157
143	Eddington-inspired Born-Infeld gravity: Phenomenology of nonlinear gravity-matter coupling. Physical Review D, 2012, 85, .	4.7	103
144	NR/HEP: roadmap for the future. Classical and Quantum Gravity, 2012, 29, 244001.	4.0	50

#	Article	IF	CITATIONS
145	TESTING ALTERNATIVE THEORIES OF GRAVITY USING THE SUN. Astrophysical Journal, 2012, 745, 15.	4.5	103
146	Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories. Physical Review D, 2012, 85, .	4.7	99
147	Black-Hole Bombs and Photon-Mass Bounds. Physical Review Letters, 2012, 109, 131102.	7.8	190
148	Surface Singularities in Eddington-Inspired Born-Infeld Gravity. Physical Review Letters, 2012, 109, 251102.	7.8	114
149	Applications of black hole perturbation theory. European Physical Journal Plus, 2012, 127, 1.	2.6	5
150	Slowly rotating black holes in alternative theories of gravity. Physical Review D, 2011, 84, .	4.7	152
151	Holography of charged dilatonic black branes at finite temperature. Journal of High Energy Physics, 2011, 2011, 1.	4.7	52
152	Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes. Journal of High Energy Physics, 2011, 2011, 1.	4.7	19
153	Floating and Sinking: The Imprint of Massive Scalars around Rotating Black Holes. Physical Review Letters, 2011, 107, 241101.	7.8	120
154	Compact Stars in Eddington Inspired Gravity. Physical Review Letters, 2011, 107, 031101.	7.8	164
155	Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity. Physical Review D, 2011, 83, .	4.7	57
156	Vacuum revealed: The final state of vacuum instabilities in compact stars. Physical Review D, 2011, 83, .	4.7	41
157	Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity. Physical Review D, 2011, 84, .	4.7	133
158	Gravitational-wave signature of a thin-shell gravastar. Journal of Physics: Conference Series, 2010, 222, 012032.	0.4	14
159	Scalar hairs and exact vortex solutions in 3D AdS gravity. Journal of High Energy Physics, 2010, 2010, 1.	4.7	5
160	Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime. Journal of High Energy Physics, 2010, 2010, 1.	4.7	99
161	Gravitational instabilities of superspinars. Physical Review D, 2010, 82, .	4.7	89
162	Gravitational wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar. Physical Review D, 2010, 81, .	4.7	46

#	Article	IF	CITATIONS
163	Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity. Physical Review D, 2010, 81, .	4.7	133
164	Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes. Physical Review D, 2009, 79, .	4.7	198
165	Higher curvature brane corrections to the DGP model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 674, 308-312.	4.1	6
166	Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar. Physical Review D, 2009, 80, .	4.7	127
167	Breit-Wigner resonances and the quasinormal modes of anti–deÂSitter black holes. Physical Review D, 2009, 79, .	4.7	45
168	Ergoregion instability of ultracompact astrophysical objects. Physical Review D, 2008, 77, .	4.7	144
169	Instability of hyper-compact Kerr-like objects. Classical and Quantum Gravity, 2008, 25, 195010.	4.0	60
170	Acoustic horizons for axially and spherically symmetric fluid flow. Classical and Quantum Gravity, 2006, 23, 2427-2433.	4.0	3