
Arthur Christopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	1.3	997
2	Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nature Reviews Drug Discovery, 2009, 8, 41-54.	21.5	929
3	G Protein-Coupled Receptor Allosterism and Complexing. Pharmacological Reviews, 2002, 54, 323-374.	7.1	833
4	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	13.7	779
5	Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nature Reviews Drug Discovery, 2013, 12, 205-216.	21.5	627
6	Allosteric Modulation of G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2007, 47, 1-51.	4.2	615
7	Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nature Reviews Drug Discovery, 2002, 1, 198-210.	21.5	574
8	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein oupled receptors. British Journal of Pharmacology, 2017, 174, S17-S129.	2.7	557
9	International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacological Reviews, 2003, 55, 597-606.	7.1	536
10	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
11	Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nature Reviews Molecular Cell Biology, 2018, 19, 638-653.	16.1	457
12	Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.	13.7	424
13	A Simple Method for Quantifying Functional Selectivity and Agonist Bias. ACS Chemical Neuroscience, 2012, 3, 193-203.	1.7	422
14	Allosteric Modulation of the Cannabinoid CB1 Receptor. Molecular Pharmacology, 2005, 68, 1484-1495.	1.0	409
15	Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 630-644.	21.5	396
16	Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends in Pharmacological Sciences, 2003, 24, 580-588.	4.0	374
17	Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013, 503, 295-299.	13.7	365
18	G-Protein–Coupled Receptor Mas Is a Physiological Antagonist of the Angiotensin II Type 1 Receptor. Circulation, 2005, 111, 1806-1813.	1.6	346

#	Article	IF	CITATIONS
19	Muscarinic acetylcholine receptors: novel opportunities for drug development. Nature Reviews Drug Discovery, 2014, 13, 549-560.	21.5	337
20	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
21	Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends in Pharmacological Sciences, 2007, 28, 382-389.	4.0	330
22	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	2.7	295
23	Novel Receptor Partners and Function of Receptor Activity-modifying Proteins. Journal of Biological Chemistry, 2003, 278, 3293-3297.	1.6	283
24	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	13.7	274
25	Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 2016, 531, 335-340.	13.7	272
26	The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 2016, 7, 10842.	5.8	270
27	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	2.7	269
28	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	13.7	263
29	Structural insights into G-protein-coupled receptor allostery. Nature, 2018, 559, 45-53.	13.7	255
30	Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell, 2016, 166, 1084-1102.	13.5	246
31	Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clinical Science, 2011, 121, 297-303.	1.8	241
32	Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell, 2017, 168, 867-877.e13.	13.5	237
33	Allosteric modulation of G protein-coupled receptors: A pharmacological perspective. Neuropharmacology, 2011, 60, 24-35.	2.0	235
34	Allosteric modulation of the muscarinic M ₄ receptor as an approach to treating schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10978-10983.	3.3	214
35	Allosteric Modulation of Seven Transmembrane Spanning Receptors: Theory, Practice, and Opportunities for Central Nervous System Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 1445-1464.	2.9	212
36	Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561, 492-497.	13.7	210

#	Article	IF	CITATIONS
37	Quantification of Ligand Bias for Clinically Relevant <i>β</i> ₂ -Adrenergic Receptor Ligands: Implications for Drug Taxonomy. Molecular Pharmacology, 2014, 85, 492-509.	1.0	207
38	Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5211-5216.	3.3	203
39	Pharmacological Discrimination of Calcitonin Receptor: Receptor Activity-Modifying Protein Complexes. Molecular Pharmacology, 2005, 67, 1655-1665.	1.0	196
40	Allosteric Ligands of the Glucagon-Like Peptide 1 Receptor (GLP-1R) Differentially Modulate Endogenous and Exogenous Peptide Responses in a Pathway-Selective Manner: Implications for Drug Screening. Molecular Pharmacology, 2010, 78, 456-465.	1.0	195
41	Advances in G Protein-Coupled Receptor Allostery: From Function to Structure. Molecular Pharmacology, 2014, 86, 463-478.	1.0	192
42	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
43	Microglial activation and progressive brain changes in schizophrenia. British Journal of Pharmacology, 2016, 173, 666-680.	2.7	185
44	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	2.7	183
45	Novel Allosteric Modulators of G Protein-coupled Receptors. Journal of Biological Chemistry, 2015, 290, 19478-19488.	1.6	173
46	Assessing the distribution of parameters in models of ligand–receptor interaction: to log or not to log. Trends in Pharmacological Sciences, 1998, 19, 351-357.	4.0	168
47	A Novel Mechanism of G Protein-coupled Receptor Functional Selectivity. Journal of Biological Chemistry, 2008, 283, 29312-29321.	1.6	165
48	Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends in Pharmacological Sciences, 2013, 34, 59-66.	4.0	150
49	RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. , 2008, 119, 7-23.		149
50	Identification of Orthosteric and Allosteric Site Mutations in M2 Muscarinic Acetylcholine Receptors That Contribute to Ligand-selective Signaling Bias. Journal of Biological Chemistry, 2010, 285, 7459-7474.	1.6	149
51	The Best of Both Worlds? Bitopic Orthosteric/Allosteric Ligands of G Protein–Coupled Receptors. Annual Review of Pharmacology and Toxicology, 2012, 52, 153-178.	4.2	148
52	Molecular Mechanisms of Action and In Vivo Validation of an M4 Muscarinic Acetylcholine Receptor Allosteric Modulator with Potential Antipsychotic Properties. Neuropsychopharmacology, 2010, 35, 855-869.	2.8	143
53	DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs <i>in Vitro</i> and <i>in Vivo</i> . ACS Pharmacology and Translational Science, 2018, 1, 61-72.	2.5	143
54	Positive and Negative Allosteric Modulators Promote Biased Signaling at the Calcium-Sensing Receptor. Endocrinology, 2012, 153, 1232-1241.	1.4	142

#	Article	IF	CITATIONS
55	Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB Journal, 2009, 23, 442-450.	0.2	140
56	Inhibition of Tumor Angiogenesis and Growth by a Small-Molecule Multi-FGF Receptor Blocker with Allosteric Properties. Cancer Cell, 2013, 23, 477-488.	7.7	138
57	Critical Role for the Second Extracellular Loop in the Binding of Both Orthosteric and Allosteric G Protein-coupled Receptor Ligands. Journal of Biological Chemistry, 2007, 282, 25677-25686.	1.6	137
58	Receptor Activity-Modifying Proteins Differentially Modulate the G Protein-Coupling Efficiency of Amylin Receptors. Endocrinology, 2008, 149, 5423-5431.	1.4	130
59	Endogenous Allosteric Modulators of G Protein–Coupled Receptors. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 246-260.	1.3	127
60	The Extracellular Surface of the GLP-1 Receptor Is a Molecular Trigger for Biased Agonism. Cell, 2016, 165, 1632-1643.	13.5	126
61	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	3.9	126
62	Allosteric Modulators of the Adenosine A ₁ Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes. Journal of Medicinal Chemistry, 2009, 52, 4543-4547.	2.9	124
63	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	13.7	119
64	Biased Agonism and Biased Allosteric Modulation at the CB ₁ Cannabinoid Receptor. Molecular Pharmacology, 2015, 88, 368-379.	1.0	118
65	Probe Dependence in the Allosteric Modulation of a G Protein-Coupled Receptor: Implications for Detection and Validation of Allosteric Ligand Effects. Molecular Pharmacology, 2012, 81, 41-52.	1.0	115
66	Allosteric Modulation of Muscarinic Acetylcholine Receptors. Current Neuropharmacology, 2007, 5, 157-167.	1.4	114
67	Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy. Cell, 2016, 167, 739-749.e11.	13.5	113
68	Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends in Pharmacological Sciences, 2006, 27, 475-481.	4.0	112
69	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	4.5	111
70	A new mechanism of allostery in a G protein–coupled receptor dimer. Nature Chemical Biology, 2014, 10, 745-752.	3.9	108
71	Structure-Function Studies of Allosteric Agonism at M2Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2007, 72, 463-476.	1.0	105

New Insights into the Function of M₄ Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer) Tj ETQq0 0 0 rgBTdOverloaba O Tf 50

#	Article	IF	CITATIONS
73	Small-molecule-biased formyl peptide receptor agonist compound 17b protects against myocardial ischaemia-reperfusion injury in mice. Nature Communications, 2017, 8, 14232.	5.8	104
74	Probing the Molecular Mechanism of Interaction between 4-n-Butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the Muscarinic M1 Receptor: Direct Pharmacological Evidence That AC-42 Is an Allosteric Agonist. Molecular Pharmacology, 2006, 69, 236-246.	1.0	101
75	A Monod-Wyman-Changeux Mechanism Can Explain G Protein-coupled Receptor (GPCR) Allosteric Modulation. Journal of Biological Chemistry, 2012, 287, 650-659.	1.6	98
76	Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11927-11932.	3.3	97
77	ALLOSTERIC INTERACTIONS AT MUSCARINIC CHOLINOCEPTORS. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 185-194.	0.9	96
78	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	2.5	96
79	Biased Agonism of Endogenous Opioid Peptides at the <i>μ</i> -Opioid Receptor. Molecular Pharmacology, 2015, 88, 335-346.	1.0	93
80	Rules of Engagement: GPCRs and G Proteins. ACS Pharmacology and Translational Science, 2018, 1, 73-83.	2.5	93
81	Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4614-4619.	3.3	92
82	Biased Agonism at G Proteinâ€Coupled Receptors: The Promise and the Challenges—A Medicinal Chemistry Perspective. Medicinal Research Reviews, 2014, 34, 1286-1330.	5.0	92
83	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	4.5	92
84	Allostery and Biased Agonism at Class B G Protein-Coupled Receptors. Chemical Reviews, 2017, 117, 111-138.	23.0	91
85	Tyrosine Sulfation of Chemokine Receptor CCR2 Enhances Interactions with Both Monomeric and Dimeric Forms of the Chemokine Monocyte Chemoattractant Protein-1 (MCP-1). Journal of Biological Chemistry, 2013, 288, 10024-10034.	1.6	90
86	Determinants of 1-Piperidinecarboxamide, N-[2-[[5-Amino-l-[[4-(4-pyridinyl)-l-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl] (BIBN4096BS) Affinity for Calcitonin Gene-Related Peptide and Amylin Receptorsâ€"The Role of Receptor Activity Modifying Protein 1. Molecular Pharmacology, 2006, 70, 1984-1991.	-2-qxoethy	/l]-4-(1,4-dihy
87	Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. Receptors and Channels, 2003, 9, 241-260.	1.1	88
88	†Ins and outs' of seven-transmembrane receptor signalling to ERK. Trends in Endocrinology and Metabolism, 2005, 16, 26-33.	3.1	86
89	Characterization of serotonin 5-HT2C receptor signaling to extracellular signal-regulated kinases 1 and 2. Journal of Neurochemistry, 2005, 93, 1603-1615.	2.1	85
90	Procalcitonin has bioactivity at calcitonin receptor family complexes: Potential mediator implications in sepsis*. Critical Care Medicine. 2008. 36. 1637-1640.	0.4	85

#	Article	IF	CITATIONS
91	Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Research, 2016, 26, 574-592.	5.7	85
92	Allosteric Modulation of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2004, 10, 2003-2013.	0.9	84
93	Polymorphism and Ligand Dependent Changes in Human Glucagon-Like Peptide-1 Receptor (GLP-1R) Function: Allosteric Rescue of Loss of Function Mutation. Molecular Pharmacology, 2011, 80, 486-497.	1.0	84
94	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	13.7	84
95	Sustainable Pharmacy Education in the Time of COVID-19. American Journal of Pharmaceutical Education, 2020, 84, ajpe8088.	0.7	84
96	RAMPs: 5 years on, where to now?. Trends in Pharmacological Sciences, 2003, 24, 596-601.	4.0	83
97	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation. Journal of Biological Chemistry, 2012, 287, 3642-3658.	1.6	83
98	Allosteric Modulation of the Calcium-sensing Receptor by γ-Glutamyl Peptides. Journal of Biological Chemistry, 2011, 286, 8786-8797.	1.6	82
99	Accelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5675-84.	3.3	82
100	Reversible and Specific Extracellular Antagonism of Receptor-Histidine Kinase Signaling. Journal of Biological Chemistry, 2002, 277, 6247-6253.	1.6	81
101	The state of GPCR research in 2004. Nature Reviews Drug Discovery, 2004, 3, 577-626.	21.5	81
102	Orthosteric/Allosteric Bitopic Ligands: Going Hybrid at GPCRs. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 125-135.	3.4	81
103	A Structure–Activity Analysis of Biased Agonism at the Dopamine D2 Receptor. Journal of Medicinal Chemistry, 2013, 56, 9199-9221.	2.9	80
104	Amylin receptors: molecular composition and pharmacology. Biochemical Society Transactions, 2004, 32, 865-867.	1.6	78
105	Differential Activation and Modulation of the Glucagon-Like Peptide-1 Receptor by Small Molecule Ligands. Molecular Pharmacology, 2013, 83, 822-834.	1.0	77
106	Allosteric targeting of receptor tyrosine kinases. Nature Biotechnology, 2014, 32, 1113-1120.	9.4	73
107	Allosteric modulators of G-protein-coupled receptors. Current Opinion in Pharmacology, 2003, 3, 551-556.	1.7	72
108	Complexing Receptor Pharmacology: Modulation of Family B G Protein-Coupled Receptor Function by RAMPs. Annals of the New York Academy of Sciences, 2006, 1070, 90-104.	1.8	72

#	Article	IF	CITATIONS
109	Identification of Molecular Phenotypes and Biased Signaling Induced by Naturally Occurring Mutations of the Human Calcium-Sensing Receptor. Endocrinology, 2012, 153, 4304-4316.	1.4	72
110	Biased allosteric modulation at the <scp>CaS</scp> receptor engendered by structurally diverse calcimimetics. British Journal of Pharmacology, 2015, 172, 185-200.	2.7	71
111	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	2.5	71
112	Structural Determinants of Allosteric Agonism and Modulation at the M4 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2010, 285, 19012-19021.	1.6	70
113	Structural Basis of Receptor Sulfotyrosine Recognition by a CC Chemokine: The N-Terminal Region of CCR3 Bound to CCL11/Eotaxin-1. Structure, 2014, 22, 1571-1581.	1.6	70
114	Identification of N-Terminal Receptor Activity-Modifying Protein Residues Important for Calcitonin Gene-Related Peptide, Adrenomedullin, and Amylin Receptor Function. Molecular Pharmacology, 2008, 74, 1059-1071.	1.0	69
115	Quantification of Functional Selectivity at the Human α _{1A} -Adrenoceptor. Molecular Pharmacology, 2011, 79, 298-307.	1.0	69
116	Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery. Molecular Pharmacology, 2012, 82, 281-290.	1.0	69
117	Impact of Clinically Relevant Mutations on the Pharmacoregulation and Signaling Bias of the Calcium-Sensing Receptor by Positive and Negative Allosteric Modulators. Endocrinology, 2013, 154, 1105-1116.	1.4	68
118	Modulation of the Glucagon-Like Peptide-1 Receptor Signaling by Naturally Occurring and Synthetic Flavonoids. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 540-550.	1.3	67
119	Structure–Activity Relationships of Privileged Structures Lead to the Discovery of Novel Biased Ligands at the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2014, 57, 4924-4939.	2.9	67
120	Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opinion on Drug Discovery, 2011, 6, 811-825.	2.5	64
121	Allostery in GPCRs: â€~MWC' revisited. Trends in Biochemical Sciences, 2011, 36, 663-672.	3.7	64
122	Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors. ACS Chemical Biology, 2016, 11, 1220-1229.	1.6	63
123	Structural Basis for Binding of Allosteric Drug Leads in the Adenosine A1 Receptor. Scientific Reports, 2018, 8, 16836.	1.6	63
124	Glucagon-like peptide-1 receptor dimerization differentially regulates agonist signaling but does not affect small molecule allostery. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18607-18612.	3.3	62
125	Orthosteric and Allosteric Modes of Interaction of Novel Selective Agonists of the M ₁ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2010, 78, 94-104.	1.0	61
126	Impact of species variability and â€~probeâ€dependence' on the detection and <i>in vivo</i> validation of allosteric modulation at the M ₄ muscarinic acetylcholine receptor. British Journal of Pharmacology, 2011, 162, 1659-1670.	2.7	60

#	Article	IF	CITATIONS
127	Prolonged Calcitonin Receptor Signaling by Salmon, but Not Human Calcitonin, Reveals Ligand Bias. PLoS ONE, 2014, 9, e92042.	1.1	60
128	Recent advances in understanding GLP-1R (glucagon-like peptide-1 receptor) function. Biochemical Society Transactions, 2013, 41, 172-179.	1.6	59
129	The assessment of antagonist potency under conditions of transient response kinetics. European Journal of Pharmacology, 1999, 382, 217-227.	1.7	58
130	Development of M ₁ mAChR Allosteric and Bitopic Ligands: Prospective Therapeutics for the Treatment of Cognitive Deficits. ACS Chemical Neuroscience, 2013, 4, 1026-1048.	1.7	58
131	Quantification of adenosine A 1 receptor biased agonism: Implications for drug discovery. Biochemical Pharmacology, 2016, 99, 101-112.	2.0	58
132	Measurements of ligand bias and functional affinity. Nature Reviews Drug Discovery, 2013, 12, 483-483.	21.5	57
133	Structure-based discovery of selective positive allosteric modulators of antagonists for the M ₂ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2419-E2428.	3.3	57
134	Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science, 2021, 372, .	6.0	57
135	Distinct Receptor Activity-Modifying Protein Domains Differentially Modulate Interaction with Calcitonin Receptors. Molecular Pharmacology, 2006, 69, 1984-1989.	1.0	56
136	Role of the Second Extracellular Loop of the Adenosine A ₁ Receptor on Allosteric Modulator Binding, Signaling, and Cooperativity. Molecular Pharmacology, 2016, 90, 715-725.	1.0	56
137	A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Molecular Pharmacology, 2016, 89, 335-347.	1.0	56
138	M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss. Journal of Clinical Investigation, 2016, 127, 487-499.	3.9	56
139	Modulating receptor function through RAMPs: can they represent drug targets in themselves?. Drug Discovery Today, 2009, 14, 413-419.	3.2	55
140	Molecular Mechanisms of Bitopic Ligand Engagement with the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 23817-23837.	1.6	55
141	2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists. Journal of Medicinal Chemistry, 2008, 51, 6165-6172.	2.9	54
142	Discovery, Synthesis, and Molecular Pharmacology of Selective Positive Allosteric Modulators of the δ-Opioid Receptor. Journal of Medicinal Chemistry, 2015, 58, 4220-4229.	2.9	54
143	G-protein-coupled receptor allosterism: the promise and the problem(s). Biochemical Society Transactions, 2004, 32, 873-877.	1.6	53
144	Synthesis and Characterization of Novel 2-Amino-3-benzoylthiophene Derivatives as Biased Allosteric Agonists and Modulators of the Adenosine A ₁ Receptor. Journal of Medicinal Chemistry, 2012, 55, 2367-2375.	2.9	53

#	Article	IF	CITATIONS
145	Synthesis and Pharmacological Profiling of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) as Allosteric Modulators of the M ₁ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 5151-5172.	2.9	53
146	A Positive Allosteric Modulator of the Adenosine A ₁ Receptor Selectively Inhibits Primary Afferent Synaptic Transmission in a Neuropathic Pain Model. Molecular Pharmacology, 2015, 88, 460-468.	1.0	53
147	Novel <scp>GPCR</scp> paradigms at the μâ€opioid receptor. British Journal of Pharmacology, 2015, 172, 287-296.	2.7	53
148	Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Molecular Pharmacology, 2016, 90, 703-714.	1.0	53
149	Application of a Kinetic Model to the Apparently Complex Behavior of Negative and Positive Allosteric Modulators of Muscarinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1062-1072.	1.3	52
150	Small Molecule Allosteric Modulation of the Glucagon-Like Peptide-1 Receptor Enhances the Insulinotropic Effect of Oxyntomodulin. Molecular Pharmacology, 2012, 82, 1066-1073.	1.0	51
151	Molecular Determinants of Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 6067-6079.	1.6	51
152	Recent advances in the determination of G protein-coupled receptor structures. Current Opinion in Structural Biology, 2018, 51, 28-34.	2.6	51
153	The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling. Brain Research, 2010, 1343, 153-167.	1.1	50
154	Ligand-Independent Adenosine A2B Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 36-44.	1.3	50
155	Functional Importance of a Structurally Distinct Homodimeric Complex of the Family B G Protein-Coupled Secretin Receptor. Molecular Pharmacology, 2009, 76, 264-274.	1.0	49
156	Mechanistic Insights into Allosteric Structure-Function Relationships at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 33701-33711.	1.6	49
157	New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. British Journal of Pharmacology, 2018, 175, 4036-4046.	2.7	49
158	On the Mechanism of Interaction of Potent Surmountable and Insurmountable Antagonists with the Prostaglandin D2 Receptor CRTH2. Molecular Pharmacology, 2006, 69, 1441-1453.	1.0	48
159	Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochemical Pharmacology, 2016, 113, 70-87.	2.0	48
160	Crystal structure of the M ₅ muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26001-26007.	3.3	48
161	Investigation of the Interaction of a Putative Allosteric Modulator, N-(2,3-Diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) Methanamine Hydrobromide (SCH-202676), with M1 Muscarinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 830-837.	1.3	47
162	Discovery of a Novel Class of Negative Allosteric Modulator of the Dopamine D ₂ Receptor Through Fragmentation of a Bitopic Ligand. Journal of Medicinal Chemistry, 2015, 58, 6819-6843.	2.9	47

#	Article	IF	CITATIONS
163	Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature Communications, 2019, 10, 3289.	5.8	47
164	Qualitative and quantitative assessment of relative agonist efficacy. Biochemical Pharmacology, 1999, 58, 735-748.	2.0	46
165	Modulation of cannabinoid agonist binding by 5-HT in the rat cerebellum. Journal of Neurochemistry, 2002, 80, 1095-1102.	2.1	46
166	Determination of Adenosine A ₁ Receptor Agonist and Antagonist Pharmacology Using <i>Saccharomyces cerevisiae</i> : Implications for Ligand Screening and Functional Selectivity. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 277-286.	1.3	46
167	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	5.8	46
168	The generation of nitric oxide by G protein-coupled receptors. Life Sciences, 1998, 64, 1-15.	2.0	45
169	Glucagon-like peptide-1 receptor internalisation controls spatiotemporal signalling mediated by biased agonists. Biochemical Pharmacology, 2018, 156, 406-419.	2.0	45
170	Consequences of splice variation on Secretin family G protein oupled receptor function. British Journal of Pharmacology, 2012, 166, 98-109.	2.7	44
171	From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer's disease. Cell, 2021, 184, 5886-5901.e22.	13.5	44
172	Comparison of Receptor Binding Characteristics of Commonly Used Muscarinic Antagonists in Human Bladder Detrusor and Mucosa. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 893-899.	1.3	43
173	Design and Receptor Interactions of Obligate Dimeric Mutant of Chemokine Monocyte Chemoattractant Protein-1 (MCP-1). Journal of Biological Chemistry, 2012, 287, 14692-14702.	1.6	43
174	Biased allosteric agonism and modulation of metabotropic glutamate receptor 5: Implications for optimizing preclinical neuroscience drug discovery. Neuropharmacology, 2017, 115, 60-72.	2.0	43
175	Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. Journal of Biological Chemistry, 2018, 293, 9370-9387.	1.6	43
176	Characterization of the Novel Positive Allosteric Modulator, LY2119620, at the Muscarinic M ₂ and M ₄ Receptors. Molecular Pharmacology, 2014, 86, 106-115.	1.0	42
177	Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants. PLoS ONE, 2016, 11, e0146846.	1.1	42
178	A Critical Role for the Short Intracellular C Terminus in Receptor Activity-Modifying Protein Function. Molecular Pharmacology, 2006, 70, 1750-1760.	1.0	41
179	3- and 6-Substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 7353-7361.	1.4	41
180	Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends in Pharmacological Sciences, 2015, 36, 215-225.	4.0	41

#	Article	IF	CITATIONS
181	Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochemical Pharmacology, 2016, 118, 68-87.	2.0	41
182	Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes, Obesity and Metabolism, 2017, 19, 4-21.	2.2	41
183	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e3001295.	2.6	41
184	Interaction of anandamide with the M1 and M4 muscarinic acetylcholine receptors. Brain Research, 2001, 915, 70-78.	1.1	40
185	Effect of the Calcimimetic R-568 [3-(2-Chlorophenyl)- <i>N</i> -((1 <i>R</i>)-1-(3-methoxyphenyl)ethyl)-1-propanamine] on Correcting Inactivating Mutations in the Human Calcium-Sensing Receptor. Journal of Pharmacology and Experimental Therapeutics. 2009. 331. 775-786.	1.3	40
186	Structureâ&"Activity Study of <i>N</i> -((<i>trans</i>)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i>)-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole-2 (SB269652), a Bitopic Ligand That Acts as a Negative Allosteric Modulator of the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2015, 58, 5287-5307.	-carboxan 2.9	nide 40
187	Delineating the Mode of Action of Adenosine A ₁ Receptor Allosteric Modulators. Molecular Pharmacology, 2010, 78, 444-455.	1.0	39
188	Dynamic mechanisms of non-classical antagonism by competitive AT1 receptor antagonists. Trends in Pharmacological Sciences, 2000, 21, 376-381.	4.0	38
189	Pharmacological analysis of cannabinoid receptor activity in the rat vas deferens. British Journal of Pharmacology, 2001, 132, 1281-1291.	2.7	38
190	Evidence for Pleiotropic Signaling at the Mouse β3-Adrenoceptor Revealed by SR59230A [3-(2-Ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propanol Oxalate]. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1064-1074.	1.3	38
191	Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. Journal of General Physiology, 2018, 150, 1360-1372.	0.9	38
192	The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacology and Translational Science, 2019, 2, 31-51.	2.5	38
193	Engendering biased signalling from the calciumâ€sensing receptor for the pharmacotherapy of diverse disorders. British Journal of Pharmacology, 2014, 171, 1142-1155.	2.7	37
194	Structure-Activity Analysis of Biased Agonism at the Human Adenosine A ₃ Receptor. Molecular Pharmacology, 2016, 90, 12-22.	1.0	37
195	Capadenoson, a clinically trialed partial adenosine A 1 receptor agonist, can stimulate adenosine A 2B receptor biased agonism. Biochemical Pharmacology, 2017, 135, 79-89.	2.0	37
196	Mechanisms of ERK1/2 Regulation by Seven-Transmembrane-Domain Receptors. Current Pharmaceutical Design, 2006, 12, 1683-1702.	0.9	36
197	Biased M1-muscarinic-receptor-mutant mice inform the design of next-generation drugs. Nature Chemical Biology, 2020, 16, 240-249.	3.9	36
198	4-Phenylpyridin-2-one Derivatives: A Novel Class of Positive Allosteric Modulator of the M ₁ Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2016, 59, 388-409.	2.9	35

#	Article	IF	CITATIONS
199	Neurological, neuropsychiatric and neurodevelopmental complications of COVID-19. Australian and New Zealand Journal of Psychiatry, 2021, 55, 750-762.	1.3	35
200	Beyond Eyeballing: Fitting Models to Experimental Data. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35, 359-391.	2.3	34
201	Overview of Receptor Allosterism. Current Protocols in Pharmacology, 2010, 51, Unit 1.21.	4.0	34
202	Characterization of the subtype selectivity of the allosteric modulator heptane-1,7-bis-(dimethyl-3′-phthalimidopropyl) ammonium bromide (c7/3-phth) at cloned muscarinic acetylcholine receptors. Biochemical Pharmacology, 1999, 57, 171-179.	2.0	33
203	H2 Relaxin Is a Biased Ligand Relative to H3 Relaxin at the Relaxin Family Peptide Receptor 3 (RXFP3). Molecular Pharmacology, 2010, 77, 759-772.	1.0	33
204	Analytical pharmacology: the impact of numbers on pharmacology. Trends in Pharmacological Sciences, 2011, 32, 189-196.	4.0	33
205	Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology, 2018, 43, 1510-1517.	2.8	33
206	The Role of Transmembrane Domain 3 in the Actions of Orthosteric, Allosteric, and Atypical Agonists of the M ₄ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2011, 79, 855-865.	1.0	32
207	Functional and structural perspectives on allosteric modulation of GPCRs. Current Opinion in Cell Biology, 2014, 27, 94-101.	2.6	32
208	Regulation of M2 Muscarinic Acetylcholine Receptor Expression and Signaling by Prolonged Exposure to Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 382-390.	1.3	31
209	Effects of Conformational Restriction of 2-Amino-3-benzoylthiophenes on A ₁ Adenosine Receptor Modulation. Journal of Medicinal Chemistry, 2010, 53, 6550-6559.	2.9	31
210	Reverse Engineering of the Selective Agonist TBPB Unveils Both Orthosteric and Allosteric Modes of Action at the M1 Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2013, 84, 425-437.	1.0	31
211	Allosteric Modulation of M1 Muscarinic Acetylcholine Receptor Internalization and Subcellular Trafficking. Journal of Biological Chemistry, 2014, 289, 15856-15866.	1.6	31
212	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Differentially Regulates Orthosteric but Not Allosteric Agonist Binding and Function. Journal of Biological Chemistry, 2012, 287, 3659-3673.	1.6	30
213	Minireview: Signal Bias, Allosterism, and Polymorphic Variation at the GLP-1R: Implications for Drug Discovery. Molecular Endocrinology, 2013, 27, 1234-1244.	3.7	30
214	The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochemical Pharmacology, 2016, 117, 46-56.	2.0	30
215	Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Frontiers in Pharmacology, 2020, 11, 606656.	1.6	30
216	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	5.8	30

#	Article	IF	CITATIONS
217	A Structure–Activity Relationship Study of Bitopic <i>N</i> ⁶ -Substituted Adenosine Derivatives as Biased Adenosine A ₁ Receptor Agonists. Journal of Medicinal Chemistry, 2018, 61, 2087-2103.	2.9	29
218	Divergent effects of strontium and calciumâ€sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. British Journal of Pharmacology, 2018, 175, 4095-4108.	2.7	29
219	Stimulus Bias Provides Evidence for Conformational Constraints in the Structure of a G Protein-coupled Receptor. Journal of Biological Chemistry, 2012, 287, 37066-37077.	1.6	28
220	The complexity of signalling mediated by the glucagon-like peptide-1 receptor. Biochemical Society Transactions, 2016, 44, 582-588.	1.6	28
221	A structural basis for amylin receptor phenotype. Science, 2022, 375, eabm9609.	6.0	28
222	Benzodiazepine ligands can act as allosteric modulators of the Type 1 cholecystokinin receptor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4401-4404.	1.0	27
223	Synthesis and Pharmacological Evaluation of Analogues of Benzyl Quinolone Carboxylic Acid (BQCA) Designed to Bind Irreversibly to an Allosteric Site of the M1Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2014, 57, 5405-5418.	2.9	27
224	Interactions of agonists with an allosteric antagonist at muscarinic acetylcholine M2 receptors. European Journal of Pharmacology, 1996, 316, 27-32.	1.7	26
225	Kinetic studies of co-operativity at atrial muscarinic m2 receptors with an "infinite dilution― procedure. Biochemical Pharmacology, 1997, 53, 795-800.	2.0	26
226	Interaction Studies of Multiple Binding Sites on M4 Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2006, 70, 736-746.	1.0	26
227	The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3704-3707.	1.0	26
228	Supraâ€physiological efficacy at <scp>GPCRs</scp> : superstition or super agonists?. British Journal of Pharmacology, 2013, 169, 353-356.	2.7	26
229	Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators. ACS Chemical Biology, 2016, 11, 1870-1879.	1.6	26
230	The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D 2 receptor. Biochemical Pharmacology, 2018, 148, 315-328.	2.0	26
231	Development of a Radioligand, [3H]LY2119620, to Probe the Human M2 and M4 Muscarinic Receptor Allosteric Binding Sites. Molecular Pharmacology, 2014, 86, 116-123.	1.0	25
232	Bitopic Binding Mode of an M ₁ Muscarinic Acetylcholine Receptor Agonist Associated with Adverse Clinical Trial Outcomes. Molecular Pharmacology, 2018, 93, 645-656.	1.0	25
233	Involvement of the sigma ₁ (<i>ïf </i> ₁) receptor in the antiâ€amnesic, but not antidepressantâ€like, effects of the aminotetrahydrofuran derivative ANAVEX1â€41. British Journal of Pharmacology, 2007, 152, 267-279.	2.7	24
234	Detection of Novel Functional Selectivity at M ₃ Muscarinic Acetylcholine Receptors Using a <i>Saccharomyces cerevisiae</i> Platform. ACS Chemical Biology, 2010, 5, 365-375.	1.6	24

#	Article	IF	CITATIONS
235	Allosteric Modulation of a Chemogenetically Modified G Protein-Coupled Receptor. Molecular Pharmacology, 2013, 83, 521-530.	1.0	24
236	Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1097-E1104.	1.8	24
237	Molecular Mechanisms of Action of M ₅ Muscarinic Acetylcholine Receptor Allosteric Modulators. Molecular Pharmacology, 2016, 90, 427-436.	1.0	24
238	Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy. Biochemical Pharmacology, 2018, 150, 214-244.	2.0	24
239	Acetylcholine Muscarinic M4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents. Biological Psychiatry, 2020, 88, 898-909.	0.7	24
240	Mu and Delta Opioid Receptors Are Coexpressed and Functionally Interact in the Enteric Nervous System of the Mouse Colon. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 465-483.	2.3	23
241	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	2.0	22
242	Effects of anandamide on the binding and signaling properties of M1 muscarinic acetylcholine receptors. Biochemical Pharmacology, 2004, 68, 2207-2219.	2.0	21
243	Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite. British Journal of Pharmacology, 2013, 169, 659-670.	2.7	21
244	Positive Allosteric Modulation of the Muscarinic M ₁ Receptor Improves Efficacy of Antipsychotics in Mouse Glutamatergic Deficit Models of Behavior. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 354-365.	1.3	21
245	Isoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	1.0	21
246	Probing Structural Requirements of Positive Allosteric Modulators of the M ₄ Muscarinic Receptor. Journal of Medicinal Chemistry, 2013, 56, 8196-8200.	2.9	20
247	Receptor Expression Modulates Calcium-Sensing Receptor Mediated Intracellular Ca ²⁺ Mobilization. Endocrinology, 2015, 156, 1330-1342.	1.4	20
248	Novel Irreversible Agonists Acting at the A ₁ Adenosine Receptor. Journal of Medicinal Chemistry, 2016, 59, 11182-11194.	2.9	20
249	<scp>VCP</scp> 746, a novel A ₁ adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 976-982.	0.9	20
250	To Bind or Not to Bind: Unravelling GPCR Polypharmacology. Cell, 2018, 172, 636-638.	13.5	20
251	Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms. Molecular Pharmacology, 2018, 93, 619-630.	1.0	20
252	Pharmacology of 5HT2C receptor-mediated ERK1/2 phosphorylation: Agonist-specific activation pathways and the impact of RNA editing. Biochemical Pharmacology, 2008, 76, 1276-1287.	2.0	19

#	Article	IF	CITATIONS
253	Prediction of Functionally Selective Allosteric Interactions at an M ₃ Muscarinic Acetylcholine Receptor Mutant Using Saccharomyces cerevisiae. Molecular Pharmacology, 2010, 78, 205-214.	1.0	19
254	Molecular Basis for Benzodiazepine Agonist Action at the Type 1 Cholecystokinin Receptor. Journal of Biological Chemistry, 2013, 288, 21082-21095.	1.6	19
255	Structure-Based Design and Discovery of New M ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2017, 60, 9239-9250.	2.9	19
256	Characterization of signalling and regulation of common calcitonin receptor splice variants and polymorphisms. Biochemical Pharmacology, 2018, 148, 111-129.	2.0	19
257	Probing the binding site of novel selective positive allosteric modulators at the M1 muscarinic acetylcholine receptor. Biochemical Pharmacology, 2018, 154, 243-254.	2.0	19
258	Molecular Determinants of the Intrinsic Efficacy of the Antipsychotic Aripiprazole. ACS Chemical Biology, 2019, 14, 1780-1792.	1.6	19
259	Synthesis and cannabinoid activity of 1-substituted-indole-3-oxadiazole derivatives: Novel agonists for the CB1 receptor. European Journal of Medicinal Chemistry, 2008, 43, 513-539.	2.6	18
260	Differential Impact of Amino Acid Substitutions on Critical Residues of the Human Glucagon-Like Peptide-1 Receptor Involved in Peptide Activity and Small-Molecule Allostery. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 52-63.	1.3	18
261	Regulation of serotonin 5-HT2C receptors by chronic ligand exposure. European Journal of Pharmacology, 2004, 498, 59-69.	1.7	17
262	Application of an Allosteric Ternary Complex Model to the Technique of Pharmacological Resultant Analysis. Journal of Pharmacy and Pharmacology, 2011, 49, 781-786.	1.2	17
263	Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Molecular Pharmacology, 2015, 88, 779-790.	1.0	17
264	Subtle Modifications to the Indole-2-carboxamide Motif of the Negative Allosteric Modulator <i>N</i> -((<i>trans</i>)-4-(2-(7-Cyano-3,4-dihydroisoquinolin-2(1 <i>H</i>)-yl)ethyl)cyclohexyl)-1 <i>H</i> -indole-2 (SB269652) Yield Dramatic Changes in Pharmacological Activity at the Dopamine D ₂ Receptor. Journal of Medicinal Chemistry, 2019, 62, 371-377.	2-carboxan	nide
265	Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology, 2019, 149, 83-96.	2.0	17
266	Evaluation of Operational Models of Agonism and Allosterism at Receptors with Multiple Orthosteric Binding Sites. Molecular Pharmacology, 2020, 97, 35-45.	1.0	17
267	Pharmacological analysis of the mode of interaction of McN-A-343 at atrial muscarinic M2 receptors. European Journal of Pharmacology, 1997, 339, 153-156.	1.7	16
268	Structure–Function Studies of Muscarinic Acetylcholine Receptors. Handbook of Experimental Pharmacology, 2012, , 29-48.	0.9	16
269	A simple method to generate stable cell lines for the analysis of transient protein-protein interactions. BioTechniques, 2013, 54, 217-221.	0.8	16
270	Synthesis and Pharmacological Evaluation of M ₄ Muscarinic Receptor Positive Allosteric Modulators Derived from VU10004. ACS Chemical Neuroscience, 2015, 6, 838-844.	1.7	16

#	Article	IF	CITATIONS
271	The action of a negative allosteric modulator at the dopamine D2 receptor is dependent upon sodium ions. Scientific Reports, 2018, 8, 1208.	1.6	16
272	A robust method for particulate detection of a genetic tag for 3D electron microscopy. ELife, 2021, 10, \cdot	2.8	16
273	Novel persistent activation of muscarinic M1 receptors by xanomeline. European Journal of Pharmacology, 1997, 334, R3-R4.	1.7	15
274	Molecular Mechanism of Action of Triazolobenzodiazepinone Agonists of the Type 1 Cholecystokinin Receptor. Possible Cooperativity across the Receptor Homodimeric Complex. Journal of Medicinal Chemistry, 2015, 58, 9562-9577.	2.9	15
275	Binding of the muscarine receptor antagonist heptane-1,7-bis(dimethyl-3â€2-phthalimidopropyl) ammonium bromide at cholinoceptor sites. European Journal of Pharmacology, 1993, 246, 1-8.	2.7	14
276	The effects of C-terminal truncation of receptor activity modifying proteins on the induction of amylin receptor phenotype from human CTb receptors. Regulatory Peptides, 2008, 145, 65-71.	1.9	14
277	Proof of Concept Study for Designed Multiple Ligands Targeting the Dopamine D ₂ , Serotonin 5-HT _{2A} , and Muscarinic M ₁ Acetylcholine Receptors. Journal of Medicinal Chemistry, 2015, 58, 1550-1555.	2.9	14
278	Novel Fused Arylpyrimidinone Based Allosteric Modulators of the M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2016, 7, 647-661.	1.7	14
279	Synthesis and Pharmacological Evaluation of Heterocyclic Carboxamides: Positive Allosteric Modulators of the M ₁ Muscarinic Acetylcholine Receptor with Weak Agonist Activity and Diverse Modulatory Profiles. Journal of Medicinal Chemistry, 2018, 61, 2875-2894.	2.9	14
280	Defining and unpacking the core concepts of pharmacology education. Pharmacology Research and Perspectives, 2021, 9, e00894.	1.1	14
281	Quantification of Allosteric Interactions at G Protein–Coupled Receptors Using Radioligand Binding Assays. Current Protocols in Pharmacology, 2011, 52, Unit 1.22.	4.0	13
282	Roles of intraloopsâ€⊋ and â€3 and the proximal Câ€ŧerminus in signalling pathway selection from the human calciumâ€sensing receptor. FEBS Letters, 2014, 588, 3340-3346.	1.3	13
283	Discovery and Optimization of Potent and CNS Penetrant M ₅ -Preferring Positive Allosteric Modulators Derived from a Novel, Chiral <i>N</i> (Indanyl)piperidine Amide Scaffold. ACS Chemical Neuroscience, 2018, 9, 1572-1581.	1.7	13
284	Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS Pharmacology and Translational Science, 2018, 1, 96-109.	2.5	13
285	Quantification of Allosteric Interactions at G Protein Coupled Receptors Using Radioligand Binding Assays. Current Protocols in Pharmacology, 2000, 11, 1.22.1.	4.0	12
286	Effects of urea pretreatment on the binding properties of adenosine A1 receptors. British Journal of Pharmacology, 2005, 146, 1119-1129.	2.7	11
287	The Impact of Orthosteric Radioligand Depletion on the Quantification of Allosteric Modulator Interactions. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 927-934.	1.3	11
288	Receptor Activity Modifying Proteins and Their Potential as Drug Targets. Progress in Molecular Biology and Translational Science, 2010, 91, 53-79.	0.9	11

#	Article	IF	CITATIONS
289	Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE, 2017, 12, e0174719.	1.1	11
290	RAMPs as Drug Targets. Advances in Experimental Medicine and Biology, 2012, 744, 61-74.	0.8	10
291	Development of a Highly Selective Allosteric Antagonist Radioligand for the Type 1 Cholecystokinin Receptor and Elucidation of Its Molecular Basis of Binding. Molecular Pharmacology, 2015, 87, 130-140.	1.0	10
292	Assessment of the Molecular Mechanisms of Action of Novel 4-Phenylpyridine-2-One and 6-Phenylpyrimidin-4-One Allosteric Modulators at the M ₁ Muscarinic Acetylcholine Receptors. Molecular Pharmacology, 2018, 94, 770-783.	1.0	10
293	Further evidence for the heterogeneity of functional muscarinic receptors in guinea pig gallbladder. European Journal of Pharmacology, 2000, 388, 115-123.	1.7	9
294	Development of a Photoactivatable Allosteric Ligand for the M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2014, 5, 902-907.	1.7	9
295	Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor. Journal of Biological Chemistry, 2016, 291, 5172-5184.	1.6	9
296	Homology Modeling of GPCRs. Methods in Molecular Biology, 2009, 552, 97-113.	0.4	9
297	The allosteric interaction of otenzepad (AF-DX 116) at muscarinic M2 receptors in guinea pig atria. European Journal of Pharmacology, 2001, 416, 235-244.	1.7	8
298	Detection and Quantification of Allosteric Modulation of Endogenous M4 Muscarinic Acetylcholine Receptor Using Impedance-Based Label-Free Technology in a Neuronal Cell Line. Journal of Biomolecular Screening, 2015, 20, 646-654.	2.6	8
299	Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Computational Biology, 2017, 13, e1005819.	1.5	8
300	Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacology and Translational Science, 2019, 2, 183-197.	2.5	8
301	Synthesis and SAR study of 4-arylpiperidines and 4-aryl-1,2,3,6-tetrahydropyridines as 5-HT2C agonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2560-2564.	1.0	7
302	A structure–activity relationship study of the positive allosteric modulator LY2033298 at the M ₄ muscarinic acetylcholine receptor. MedChemComm, 2015, 6, 1998-2003.	3.5	7
303	Prediction of Loops in G Protein-Coupled Receptor Homology Models: Effect of Imprecise Surroundings and Constraints. Journal of Chemical Information and Modeling, 2016, 56, 671-686.	2.5	7
304	High throughput, quantitative analysis of human osteoclast differentiation and activity. Analytical Biochemistry, 2017, 519, 51-56.	1.1	7
305	Structure–Activity Relationships of Pan-Gα _{q/11} Coupled Muscarinic Acetylcholine Receptor Positive Allosteric Modulators. ACS Chemical Neuroscience, 2018, 9, 1818-1828.	1.7	7
306	6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M ₁ mAChR: The Determinants of Allosteric Activity. ACS Chemical Neuroscience, 2019, 10, 1099-1114.	1.7	7

#	Article	IF	CITATIONS
307	Probe dependence and biased potentiation of metabotropic glutamate receptor 5 is mediated by differential ligand interactions in the common allosteric binding site. Biochemical Pharmacology, 2020, 177, 114013.	2.0	7
308	Rational development of a high-affinity secretin receptor antagonist. Biochemical Pharmacology, 2020, 177, 113929.	2.0	7
309	Differential contribution of metabotropic glutamate receptor 5 common allosteric binding site residues to biased allosteric agonism. Biochemical Pharmacology, 2020, 177, 114011.	2.0	7
310	Positive allosteric modulation of endogenous delta opioid receptor signaling in the enteric nervous system is a potential treatment for gastrointestinal motility disorders. American Journal of Physiology - Renal Physiology, 2022, 322, G66-G78.	1.6	7
311	[3H]N-methylscopolamine dissociation from muscarine receptors affected by low concentrations of allosteric modulators. European Journal of Pharmacology, 1995, 290, 259-262.	2.7	6
312	Transducer abstraction. Journal of Pharmacological and Toxicological Methods, 2000, 43, 55-67.	0.3	6
313	Insurmountable AT1 receptor antagonism: message in a model?. Trends in Pharmacological Sciences, 2001, 22, 555-557.	4.0	6
314	Annual Scientific Meeting of ASCEPT, 1999 From 'Captive' Agonism To Insurmountable Antagonism: Demonstrating The Power Of Analytical Pharmacology. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 223-229.	0.9	6
315	Synthesis and Cannabinoid Activity of a Variety of 2,3-Substituted 1-Benzo[b]thiophen Derivatives and 2,3-Substituted Benzofuran: Novel Agonists for the CB1 Receptor. Australian Journal of Chemistry, 2008, 61, 484.	0.5	6
316	Correspondence: Reply to â€~Compound 17b and formyl peptide receptor biased agonism in relation to cardioprotective effects in ischaemia-reperfusion injury'. Nature Communications, 2018, 9, 530.	5.8	6
317	Differential engagement of polar networks in the glucagon-like peptide 1 receptor by endogenous variants of the glucagon-like peptide 1. Biochemical Pharmacology, 2018, 156, 223-240.	2.0	6
318	Identification of a Novel Allosteric Site at the M5 Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2021, 12, 3112-3123.	1.7	6
319	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6
320	Biased Profile of Xanomeline at the Recombinant Human M ₄ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1206-1218.	1.7	6
321	Use of a spreadsheet to quantitate the equilibrium binding of an allosteric modulator. European Journal of Pharmacology, 1998, 355, 103-111.	1.7	5
322	Regulation of acetylcholine binding by ATP at the muscarinic M1 receptor in intact CHO cells. Brain Research, 1999, 839, 94-99.	1.1	5
323	Non-surmountable antagonism: transcending steady state. Trends in Pharmacological Sciences, 2001, 22, 65-66.	4.0	5
324	Molecular Basis of Action of a Small-Molecule Positive Allosteric Modulator Agonist at the Type 1 Cholecystokinin Holoreceptor. Molecular Pharmacology, 2019, 95, 245-259.	1.0	5

#	Article	IF	CITATIONS
325	Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 628060.	1.6	5
326	Tyrosine sulfation of chemokine receptor CCR2 enhances interactions with both monomeric and dimeric forms of the chemokine monocyte chemoattractant protein-1 (MCP-1) Journal of Biological Chemistry, 2014, 289, 13362.	1.6	4
327	Development of Novel 4â€Arylpyridinâ€2â€one and 6â€Arylpyrimidinâ€4â€one Positive Allosteric Modulators of t M 1 Muscarinic Acetylcholine Receptor. ChemMedChem, 2021, 16, 216-233.	he 1.6	4
328	Cognitive behavioral markers of neurodevelopmental trajectories in rodents. Translational Psychiatry, 2021, 11, 556.	2.4	4
329	Structural Features of Iperoxo–BQCA Muscarinic Acetylcholine Receptor Hybrid Ligands Determining Subtype Selectivity and Efficacy. ACS Chemical Neuroscience, 2022, 13, 97-111.	1.7	4
330	Muscarinic Acetylcholine Receptors in the Central Nervous System: Structure, Function, and Pharmacology. , 2007, , 163-208.		3
331	Utility of an "Allosteric Site-Impaired―M ₂ Muscarinic Acetylcholine Receptor as a Novel Construct for Validating Mechanisms of Action of Synthetic and Putative Endogenous Allosteric Modulators. Molecular Pharmacology, 2018, 94, 1298-1309.	1.0	3
332	Understanding Amylin Receptors. , 2010, , 41-57.		3
333	Discovery of a Positive Allosteric Modulator of Cholecystokinin Action at CCK1R in Normal and Elevated Cholesterol. Frontiers in Endocrinology, 2021, 12, 789957.	1.5	3
334	Overview of Receptor Allosterism. Current Protocols in Pharmacology, 2000, 11, 1.21.1.	4.0	2
335	Allosteric Modulation of Chemokine Receptors. Topics in Medicinal Chemistry, 2014, , 87-117.	0.4	2
336	Acetylcholine receptors (muscarinic) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
337	Interview with Arthur Christopoulos. Trends in Pharmacological Sciences, 2014, 35, 624-627.	4.0	1
338	Restoring Agonist Function at a Chemogenetically Modified M ₁ Muscarinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2020, 11, 4270-4279.	1.7	1
339	Examining the Role of the Linker in Bitopic <i>N</i> ⁶ -Substituted Adenosine Derivatives Acting as Biased Adenosine A ₁ Receptor Agonists. Journal of Medicinal Chemistry, 0, , .	2.9	1
340	Binding of the muscarine receptor antagonist heptane-1,7-bis(dimethyl-3â€2-phthalimidopropyl) ammonium bromide at cholinoceptor sites. European Journal of Pharmacology, 1993, 247, 227.	2.7	0
341	Editorial [Hot Topic: Allosteric Modulators of G Protein-Coupled Receptors (Executive Editor: Arthur) Tj ETQq1 1 0.	784314 r 1.1	gBT /Overlo
342	Editorial [Hot Topic: G Protein-Coupled Receptor Drug Targets (Executive Editors: P.M. Sexton and A.) Tj ETQq0 0	0_rgBT /O	verlock 10 T

#	Article	IF	CITATIONS
343	CGRP/Adrenomedullin. , 2013, , 744-751.		О
344	Binding Pockets and Poses of Allosteric Modulators of Opioid Receptors Identified by Metadynamics. Biophysical Journal, 2015, 108, 415a.	0.2	0
345	Strength in numbers—an arrestin interaction code. Nature Structural and Molecular Biology, 2018, 25, 437-439.	3.6	Ο
346	Acetylcholine receptors (muscarinic) in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
347	Acetylcholine receptors (muscarinic) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	Ο
348	Characterisation of the adenosine A1 receptor in Saccharomyces cerevisiae. FASEB Journal, 2008, 22, 727.2.	0.2	0
349	Binding and functional characterisation of allosteric agonists at M2 muscarinic acetylcholine receptors. FASEB Journal, 2008, 22, 724.6.	0.2	Ο
350	Adenosine A1 Receptor Biased Agonism: A Novel Approach for Cardioprotective Therapeutics. FASEB Journal, 2013, 27, lb617.	0.2	0
351	The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR): Relevance to pharmacology today and challenges for the future. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO2-8-10.	0.0	0
352	Adenosine G Protein oupled Receptor Biased Agonism to Treat Ischemic Heart Disease. FASEB Journal, 2018, 32, 555.19.	0.2	0
353	Secretin amino-terminal structure-activity relationships and complementary mutagenesis at the site of docking to the secretin receptor. Molecular Pharmacology, 2022, , MOLPHARM-AR-2022-000502.	1.0	Ο
354	Second Messenger Assays for G Protein-Coupled Receptors: cAMP, Ca2+, Inositol Phosphates, ERK1/2. , 0, , 31-52.		0
355	Investigating Drivers for M ₁ Muscarinic Acetylcholine Receptorâ€Mediated Adverse Events by M ₁ Positive Allosteric Modulators. FASEB Journal, 2022, 36, .	0.2	0
356	P598. Exploring the Molecular Determinants for Functional Selectivity of the Antipsychotic Xanomeline at Muscarinic Acetylcholine Receptors. Biological Psychiatry, 2022, 91, S331.	0.7	0