Tim D Jickells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9308209/publications.pdf

Version: 2024-02-01

TIM D LICKEUS

#	Article	IF	CITATIONS
1	Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 2005, 308, 67-71.	12.6	2,365
2	Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 2013, 6, 701-710.	12.9	1,627
3	The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles, 1991, 5, 193-259.	4.9	1,478
4	Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	930
5	Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22, .	4.9	617
6	Nutrient Biogeochemistry of the Coastal Zone. , 1998, 281, 217-222.		471
7	Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature, 2009, 457, 577-580.	27.8	338
8	Mineral particle size as a control on aerosol iron solubility. Geophysical Research Letters, 2006, 33, .	4.0	214
9	Solubilisation of aerosol trace metals by cloud processing: A laboratory study. Geochimica Et Cosmochimica Acta, 1994, 58, 3281-3287.	3.9	185
10	Atmospheric deposition of nutrients to the Atlantic Ocean. Geophysical Research Letters, 2003, 30, .	4.0	173
11	A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochemical Cycles, 2017, 31, 289-305.	4.9	146
12	Formation of Iron Nanoparticles and Increase in Iron Reactivity in Mineral Dust during Simulated Cloud Processing. Environmental Science & Technology, 2009, 43, 6592-6596.	10.0	140
13	Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 2019, 5, eaau7671.	10.3	128
14	Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing. Atmospheric Chemistry and Physics, 2011, 11, 995-1007.	4.9	122
15	Microplastics and nanoplastics in the marine-atmosphere environment. Nature Reviews Earth & Environment, 2022, 3, 393-405.	29.7	121
16	Megacities and Large Urban Agglomerations in the Coastal Zone: Interactions Between Atmosphere, Land, and Marine Ecosystems. Ambio, 2013, 42, 13-28.	5.5	117
17	The Importance of Atmospheric Deposition for Ocean Productivity. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 481-501.	8.3	116
18	The role of the oceans in climate. International Journal of Climatology, 2003, 23, 1127-1159.	3.5	110

TIM D JICKELLS

#	Article	IF	CITATIONS
19	Significance of atmospheric-derived fixed nitrogen on productivity of the Sargasso Sea. Nature, 1986, 320, 158-160.	27.8	108
20	What proportion of riverine nutrients reaches the open ocean?. Global Biogeochemical Cycles, 2017, 31, 39-58.	4.9	105
21	Air-borne dust fluxes to a deep water sediment trap in the Sargasso Sea. Global Biogeochemical Cycles, 1998, 12, 311-320.	4.9	101
22	Isotopic evidence for a marine ammonia source. Geophysical Research Letters, 2003, 30, .	4.0	97
23	Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Marine Chemistry, 2015, 177, 45-56.	2.3	93
24	Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on largeâ€scale field sampling: Fixed nitrogen and dry deposition of phosphorus. Global Biogeochemical Cycles, 2010, 24, .	4.9	91
25	Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Frontiers in Marine Science, 2020, 7, .	2.5	91
26	The Atlantic Meridional Transect (AMT) Programme: A contextual view 1995–2005. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 1485-1515.	1.4	90
27	Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	90
28	Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on largeâ€scale field sampling: Iron and other dustâ€associated elements. Global Biogeochemical Cycles, 2013, 27, 755-767.	4.9	88
29	The chemistry of western Atlantic precipitation at the midâ€Atlantic coast and on Bermuda. Journal of Geophysical Research, 1982, 87, 11013-11018.	3.3	87
30	Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 37-49.	1.6	86
31	Field observations of the oceanâ€atmosphere exchange of ammonia: Fundamental importance of temperature as revealed by a comparison of high and low latitudes. Global Biogeochemical Cycles, 2008, 22, .	4.9	83
32	Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences. Frontiers in Marine Science, 2020, 7, .	2.5	70
33	Biogeochemical value of managed realignment, Humber estuary, UK. Science of the Total Environment, 2006, 371, 19-30.	8.0	68
34	The atmospheric input of nitrogen species to the North Sea. Tellus, Series B: Chemical and Physical Meteorology, 1993, 45, 53-63.	1.6	67
35	ls the atmosphere really an important source of reactive nitrogen to coastal waters?. Continental Shelf Research, 2005, 25, 2022-2035.	1.8	67
36	Nitrogen deposition to the eastern Atlantic Ocean. The importance of south-easterly flow. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 37.	1.6	63

TIM D JICKELLS

#	Article	IF	CITATIONS
37	Nutrient Fluxes Through the Humber Estuary—Past, Present and Future. Ambio, 2000, 29, 130-135.	5.5	63
38	Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity. Global Biogeochemical Cycles, 2014, 28, 712-728.	4.9	63
39	Reviews and syntheses: the GESAMP atmospheric iron deposition model intercomparison study. Biogeosciences, 2018, 15, 6659-6684.	3.3	63
40	Atmospheric inputs of trace metals to the northeast Atlantic Ocean: the importance of southeasterly flow. Marine Chemistry, 2001, 76, 319-330.	2.3	62
41	Aerosol organic nitrogen over the remote Atlantic Ocean. Atmospheric Environment, 2010, 44, 1887-1893.	4.1	60
42	The role of organic matter in controlling copper speciation in precipitation. Atmospheric Environment, 1996, 30, 3959-3966.	4.1	59
43	Atmospheric transport of trace elements and nutrients to the oceans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150286.	3.4	57
44	Organic Nitrogen in Precipitation: Real Problem or Sampling Artefact?. Scientific World Journal, The, 2001, 1, 230-237.	2.1	56
45	The role of iron sources and transport for Southern Ocean productivity. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 87, 82-94.	1.4	52
46	Estimation of the Atmospheric Flux of Nutrients and Trace Metals to the Eastern Tropical North Atlantic Ocean*. Journals of the Atmospheric Sciences, 2015, 72, 4029-4045.	1.7	49
47	Atmospheric nitrogen inputs into the North Sea: effect on productivity. Continental Shelf Research, 2003, 23, 1743-1755.	1.8	48
48	Spatial extent and historical context of North Sea oxygen depletion in August 2010. Biogeochemistry, 2013, 113, 53-68.	3.5	46
49	Impact of atmospheric deposition on the contrasting iron biogeochemistry of the North and South Atlantic Ocean. Global Biogeochemical Cycles, 2013, 27, 1096-1107.	4.9	45
50	Ocean processes at the Antarctic continental slope. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130047.	3.4	45
51	Atmospheric input of nitrogen into the North Sea: ANICE project overview. Continental Shelf Research, 2001, 21, 2073-2094.	1.8	41
52	Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Progress in Oceanography, 2017, 158, 41-51.	3.2	40
53	Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry. Science Advances, 2021, 7, .	10.3	39
54	Ammonium accumulation during a silicate-limited diatom bloom indicates the potential for ammonia emission events. Marine Chemistry, 2007, 106, 63-75.	2.3	37

TIM D JICKELLS

#	Article	lF	CITATIONS
55	Climate change and coupling of macronutrient cycles along the atmospheric, terrestrial, freshwater and estuarine continuum. Science of the Total Environment, 2012, 434, 252-258.	8.0	35
56	Climate action requires new accounting guidance and governance frameworks to manage carbon in shelf seas. Nature Communications, 2020, 11, 4599.	12.8	35
57	Ship-Based Contributions to Global Ocean, Weather, and Climate Observing Systems. Frontiers in Marine Science, 2019, 6, .	2.5	34
58	The contribution of the deep chlorophyll maximum to primary production in a seasonally stratified shelf sea, the North Sea. Biogeochemistry, 2013, 113, 153-166.	3.5	31
59	The impacts of ocean acidification on marine trace gases and the implications forÂatmospheric chemistry andÂclimate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190769.	2.1	31
60	Direct and Indirect Effects of Estuarine Reclamation on Nutrient and Metal Fluxes in the Global Coastal Zone. Aquatic Geochemistry, 2016, 22, 337-348.	1.3	28
61	Spatial and seasonal changes of dissolved and particulate organic C in the North Sea. Hydrobiologia, 2009, 628, 13-25.	2.0	22
62	Nitrogen processes in coastal and marine ecosystems. , 2011, , 147-176.		22
63	Seasonal variability of inorganic and organic nitrogen in the North Sea. Hydrobiologia, 2008, 610, 83-98.	2.0	20
64	Characterising the seasonal cycle of dissolved organic nitrogen using Cefas SmartBuoy high-resolution time-series samples from the southern North Sea. Biogeochemistry, 2013, 113, 23-36.	3.5	18
65	The Atlantic Meridional Transect Programme (1995–2012). Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 895-898.	1.4	16
66	Dissolved organic matter release by an axenic culture of Emiliania huxleyi. Journal of the Marine Biological Association of the United Kingdom, 2008, 88, 1343-1346.	0.8	11
67	Interannual variability in the summer dissolved organic matter inventory of the North Sea: implications for the continental shelf pump. Biogeosciences, 2019, 16, 1073-1096.	3.3	10
68	High frequency measurements of dissolved inorganic and organic nutrients using instrumented moorings in the southern and central North Sea. Estuarine, Coastal and Shelf Science, 2010, 87, 631-639.	2.1	8
69	Seasonal and interannual variation of the phytoplankton and copepod dynamics in Liverpool Bay. Ocean Dynamics, 2012, 62, 307-320.	2.2	6
70	Natural Sciences Modelling in Coastal and Shelf Seas. Studies in Ecological Economics, 2015, , 41-58.	0.2	1
71	Atmospheric Transport and Deposition of Particulate Matter to the Oceans. , 2019, , 21-25.		1