Amanda G Oglesby-Sherrouse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9307592/publications.pdf

Version: 2024-02-01

331670 526287 28 1,661 21 27 citations h-index g-index papers 32 32 32 1916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation. Journal of Biological Chemistry, 2021, 296, 100160.	3.4	16
2	Impacts of Small RNAs and Their Chaperones on Bacterial Pathogenicity. Frontiers in Cellular and Infection Microbiology, 2021, 11, 604511.	3.9	18
3	The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa. Microbiology Spectrum, 2021, 9, e0051921.	3.0	10
4	Static Growth Promotes PrrF and 2-Alkyl-4(1 $<$ i> $>$ H $<$ i $>$)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. Journal of Bacteriology, 2020, 202, .	2.2	9
5	The human innate immune protein calprotectin induces iron starvation responses in Pseudomonas aeruginosa. Journal of Biological Chemistry, 2019, 294, 3549-3562.	3.4	61
6	Proteomic Analysis of the Pseudomonas aeruginosa Iron Starvation Response Reveals PrrF Small Regulatory RNA-Dependent Iron Regulation of Twitching Motility, Amino Acid Metabolism, and Zinc Homeostasis Proteins. Journal of Bacteriology, 2019, 201, .	2.2	54
7	Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells. Methods in Molecular Biology, 2018, 1737, 341-350.	0.9	0
8	PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database. Nucleic Acids Research, 2018, 46, D575-D580.	14.5	45
9	<i>Pseudomonas aeruginosa</i> AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. MBio, 2018, 9, .	4.1	36
10	The Pseudomonas aeruginosa PrrF1 and PrrF2 Small Regulatory RNAs Promote 2-Alkyl-4-Quinolone Production through Redundant Regulation of the <i>antR</i> mRNA. Journal of Bacteriology, 2018, 200, .	2.2	43
11	The Pseudomonas aeruginosa PrrF Small RNAs Regulate Iron Homeostasis during Acute Murine Lung Infection. Infection and Immunity, 2017, 85, .	2.2	44
12	Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources. Genes, 2016, 7, 126.	2.4	73
13	Cystic Fibrosis Isolates of Pseudomonas aeruginosa Retain Iron-Regulated Antimicrobial Activity against Staphylococcus aureus through the Action of Multiple Alkylquinolones. Frontiers in Microbiology, 2016, 7, 1171.	3.5	29
14	Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Scientific Reports, 2016, 6, 39172.	3.3	126
15	Interactions between Pseudomonas aeruginosa and Staphylococcus aureus during co-cultivations and polymicrobial infections. Applied Microbiology and Biotechnology, 2016, 100, 6141-6148.	3.6	86
16	The <i>prrF</i> -Encoded Small Regulatory RNAs Are Required for Iron Homeostasis and Virulence of Pseudomonas aeruginosa. Infection and Immunity, 2015, 83, 863-875.	2.2	79
17	Spoils of war: iron at the crux of clinical and ecological fitness of Pseudomonas aeruginosa. BioMetals, 2015, 28, 433-443.	4.1	21
18	Iron Depletion Enhances Production of Antimicrobials by Pseudomonas aeruginosa. Journal of Bacteriology, 2015, 197, 2265-2275.	2.2	70

#	Article	lF	CITATION
19	Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Frontiers in Cellular and Infection Microbiology, 2014, 4, 151.	3.9	38
20	A method for <i>in vivo</i> identification of bacterial small <scp>RNA</scp> â€binding proteins. MicrobiologyOpen, 2014, 3, 950-960.	3.0	13
21	The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of <i>Pseudomonas aeruginosa < li>Pathogens and Disease, 2014, 70, 307-320.</i>	2.0	74
22	Adaptation of Iron Homeostasis Pathways by a Pseudomonas aeruginosa Pyoverdine Mutant in the Cystic Fibrosis Lung. Journal of Bacteriology, 2014, 196, 2265-2276.	2.2	145
23	Iron-responsive bacterial small RNAs: variations on a theme. Metallomics, 2013, 5, 276.	2.4	105
24	Characterization of a Heme-Regulated Non-Coding RNA Encoded by the prrF Locus of Pseudomonas aeruginosa. PLoS ONE, 2010, 5, e9930.	2.5	69
25	The Influence of Iron on Pseudomonas aeruginosa Physiology. Journal of Biological Chemistry, 2008, 283, 15558-15567.	3.4	184
26	Iron and Pathogenesis of Shigella: Iron Acquisition in the Intracellular Environment. BioMetals, 2006, 19, 173-180.	4.1	62
27	Fur regulates acid resistance in <i>Shigella flexneri</i> via RyhB and <i>ydeP</i> . Molecular Microbiology, 2005, 58, 1354-1367.	2.5	80
28	Identification of the Vibrio cholerae Enterobactin Receptors VctA and IrgA: IrgA Is Not Required for Virulence. Infection and Immunity, 2002, 70, 3419-3426.	2.2	71