
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9306637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AMBRA1 regulates mitophagy by interacting with ATAD3A and promoting PINK1 stability. Autophagy, 2022, 18, 1752-1762.	4.3	25
2	Melanoma secretion of transforming growth factorâ€Î²2 leads to loss of epidermal AMBRA1 threatening epidermal integrity and facilitating tumour ulceration*. British Journal of Dermatology, 2022, 186, 694-704.	1.4	8
3	Analysis of Secreted Proteins from Prepubertal Ovarian Tissues Exposed In Vitro to Cisplatin and LH. Cells, 2022, 11, 1208.	1.8	1
4	Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs. Autophagy, 2021, 17, 2528-2548.	4.3	42
5	HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1. Autophagy, 2021, 17, 2842-2855.	4.3	25
6	Transglutaminase Type 2 regulates the Wnt/β-catenin pathway in vertebrates. Cell Death and Disease, 2021, 12, 249.	2.7	13
7	The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients. International Journal of Infectious Diseases, 2021, 105, 49-53.	1.5	38
8	Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. International Journal of Molecular Sciences, 2021, 22, 4067.	1.8	27
9	High Levels of TRIM5α Are Associated with Xenophagy in HIV-1-Infected Long-Term Nonprogressors. Cells, 2021, 10, 1207.	1.8	6
10	Transglutaminase 2 Regulates Innate Immunity by Modulating the STING/TBK1/IRF3 Axis. Journal of Immunology, 2021, 206, 2420-2429.	0.4	13
11	Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Research, 2021, 190, 105064.	1.9	37
12	Rationale and Criteria for a COVID-19 Model Framework. Viruses, 2021, 13, 1309.	1.5	3
13	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
14	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 22	22 Td (edition 1,430
15	Per2 Upregulation in Circulating Hematopoietic Progenitor Cells During Chronic HIV Infection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 362.	1.8	6

16	On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death and Disease, 2020, 11, 656.	2.7	40
17	Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19). Cell Death and Differentiation, 2020, 27, 3196-3207.	5.0	196
18	COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. Journal of Translational Medicine, 2020, 18, 233.	1.8	80

#	Article	IF	CITATIONS
19	Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Frontiers in Cell and Developmental Biology, 2020, 8, 47.	1.8	28
20	Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress. Cells, 2020, 9, 640.	1.8	9
21	Mitochondrial Interactome: A Focus on Antiviral Signaling Pathways. Frontiers in Cell and Developmental Biology, 2020, 8, 8.	1.8	74
22	TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death and Differentiation, 2020, 27, 887-902.	5.0	97
23	Negative Regulation of Mitochondrial Antiviral Signaling Protein–Mediated Antiviral Signaling by the Mitochondrial Protein LRPPRC During Hepatitis C Virus Infection. Hepatology, 2019, 69, 34-50.	3.6	36
24	Autophagy in development and regeneration: role in tissue remodelling and cell survival. , 2019, 86, 113-131.		15
25	The Impact of Mevastatin on HCV Replication and Autophagy of Non-Transformed HCV Replicon Hepatocytes Is Influenced by the Extracellular Lipid Uptake. Frontiers in Pharmacology, 2019, 10, 718.	1.6	6
26	Optimization of the autophagy measurement in a human cell line and primary cells by flow cytometry. European Journal of Histochemistry, 2019, 63, .	0.6	8
27	A TRIM32-AMBRA1-ULK1 complex initiates the autophagy response in atrophic muscle cells. Autophagy, 2019, 15, 1674-1676.	4.3	24
28	Autophagy induction in atrophic muscle cells requires ULK1 activation by TRIM32 through unanchored K63-linked polyubiquitin chains. Science Advances, 2019, 5, eaau8857.	4.7	74
29	IP-10 contributes to the inhibition of mycobacterial growth in an ex vivo whole blood assay. International Journal of Medical Microbiology, 2019, 309, 299-306.	1.5	14
30	First description of agonist and antagonist IP-10 in urine of patients with active TB. International Journal of Infectious Diseases, 2019, 78, 15-21.	1.5	17
31	Inhibition of Transglutaminase 2 as a Potential Host-Directed Therapy Against Mycobacterium tuberculosis. Frontiers in Immunology, 2019, 10, 3042.	2.2	13
32	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
33	TRIM50 regulates Beclin 1 proautophagic activity. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 908-919.	1.9	39
34	AMBRA1, a novel αâ€synucleinâ€binding protein, is implicated in the pathogenesis of multiple system atrophy. Brain Pathology, 2018, 28, 28-42.	2.1	25
35	Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75. Cell Reports, 2018, 25, 3573-3581.e4.	2.9	101
36	AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Developmental Cell, 2018, 47, 592-607.e6.	3.1	34

#	Article	IF	CITATIONS
37	Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1β-induced autophagy. Cell Death and Disease, 2018, 9, 624.	2.7	37
38	Antitubercular and anti-inflammatory properties screening of natural products from <i>Plectranthus</i> species. Future Medicinal Chemistry, 2018, 10, 1677-1691.	1.1	5
39	TG2 regulates the heatâ€shock response by the postâ€translational modification of HSF1. EMBO Reports, 2018, 19, .	2.0	35
40	Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathogens, 2018, 14, e1006790.	2.1	100
41	Role of autophagy in <scp>HIV</scp> infection and pathogenesis. Journal of Internal Medicine, 2017, 281, 422-432.	2.7	54
42	Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicology in Vitro, 2017, 41, 64-74.	1.1	47
43	PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy, 2017, 13, 654-669.	4.3	249
44	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
45	Dendritic cells activation is associated with sustained virological response to telaprevir treatment of HCV-infected patients. Clinical Immunology, 2017, 183, 82-90.	1.4	Ο
46	Emerging Mechanisms in Initiating and Terminating Autophagy. Trends in Biochemical Sciences, 2017, 42, 28-41.	3.7	203
47	Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death. Biochemical and Biophysical Research Communications, 2017, 485, 16-22.	1.0	19
48	Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate. Frontiers in Oncology, 2017, 7, 78.	1.3	261
49	Methods to Study the BECN1 Interactome in the Course of Autophagic Responses. Methods in Enzymology, 2017, 587, 429-445.	0.4	7
50	Iron overload down-regulates the expression of the HIV-1 Rev cofactor eIF5A in infected T lymphocytes. Proteome Science, 2017, 15, 18.	0.7	8
51	Glutamate induces autophagy via the two-pore channels in neural cells. Oncotarget, 2017, 8, 12730-12740.	0.8	45
52	Overexpression of parkin rescues the defective mitochondrial phenotype and the increased apoptosis of Cockayne Syndrome A cells. Oncotarget, 2017, 8, 102852-102867.	0.8	20
53	Hepatitis C virus relies on lipoproteins for its life cycle. World Journal of Gastroenterology, 2016, 22, 1953.	1.4	47
54	Fine-tuning of ULK1 mRNA and protein levels is required for autophagy oscillation. Journal of Cell Biology, 2016, 215, 841-856.	2.3	116

#	Article	IF	CITATIONS
55	Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy, 2016, 12, 963-975.	4.3	35
56	Transglutaminase type 2-dependent selective recruitment of proteins into exosomes under stressful cellular conditions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2084-2092.	1.9	47
57	Molecular mechanisms of hepatitis C virus–induced hepatocellular carcinoma. Clinical Microbiology and Infection, 2016, 22, 853-861.	2.8	125
58	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
59	Temporal regulation of autophagy response by the CULLIN 4-AMBRA1-CULLIN 5 axis. Molecular and Cellular Oncology, 2016, 3, e1008304.	0.3	4
60	Histological and proteomic profile of diabetic versus non-diabetic dilated cardiomyopathy. International Journal of Cardiology, 2016, 203, 282-289.	0.8	21
61	The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation. Oncotarget, 2015, 6, 44941-44954.	0.8	24
62	AMBRA1-regulated autophagy in vertebrate development. International Journal of Developmental Biology, 2015, 59, 109-117.	0.3	13
63	Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Molecular Cell, 2015, 58, 1001-1014.	4.5	164
64	Down-regulation of E2F1 during ER stress is required to induce apoptosis. Journal of Cell Science, 2015, 128, 1166-79.	1.2	42
65	Reticulon protein-1C is a key component of MAMs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 733-745.	1.9	16
66	Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma. Molecular and Cellular Oncology, 2015, 2, e995016.	0.3	13
67	Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death and Disease, 2015, 6, e1880-e1880.	2.7	96
68	Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death and Disease, 2015, 6, e1876-e1876.	2.7	43
69	AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death and Differentiation, 2015, 22, 419-432.	5.0	294
70	AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nature Cell Biology, 2015, 17, 20-30.	4.6	200
71	Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death and Differentiation, 2015, 22, 946-958.	5.0	127
72	Transglutaminase 2 ablation leads to mitophagy impairment associated with a metabolic shift towards aerobic glycolysis. Cell Death and Differentiation, 2015, 22, 408-418.	5.0	48

#	Article	IF	CITATIONS
73	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
74	Abstract 4568: Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. , 2015, , .		0
75	Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death and Disease, 2014, 5, e1179-e1179.	2.7	447
76	The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene, 2014, 33, 3794-3802.	2.6	75
77	AMBRA1 Interplay with Cullin E3ÂUbiquitin Ligases Regulates Autophagy Dynamics. Developmental Cell, 2014, 31, 734-746.	3.1	127
78	Autophagy in HCV Infection: Keeping Fat and Inflammation at Bay. BioMed Research International, 2014, 2014, 1-10.	0.9	29
79	Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients. Autophagy, 2014, 10, 1167-1178.	4.3	70
80	Rose Bengal Acetate PhotoDynamic Therapy (RBAc-PDT) Induces Exposure and Release of Damage-Associated Molecular Patterns (DAMPs) in Human HeLa Cells. PLoS ONE, 2014, 9, e105778.	1.1	100
81	Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. Seminars in Cancer Biology, 2013, 23, 337-343.	4.3	46
82	Molecular mechanisms of selective autophagy. Cell Death and Differentiation, 2013, 20, 1-2.	5.0	76
83	Ambra1 at the crossroad between autophagy and cell death. Oncogene, 2013, 32, 3311-3318.	2.6	81
84	EBV stimulates TLR―and autophagyâ€dependent pathways and impairs maturation in plasmacytoid dendritic cells: Implications for viral immune escape. European Journal of Immunology, 2013, 43, 147-158.	1.6	89
85	Applying proteomic technology to clinical virology. Clinical Microbiology and Infection, 2013, 19, 23-28.	2.8	20
86	<i><i>Ambra1</i></i> knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy, 2013, 9, 476-495.	4.3	46
87	Autophagy in Mycobacterium tuberculosis infection: A passepartout to flush the intruder out?. Cytokine and Growth Factor Reviews, 2013, 24, 335-343.	3.2	30
88	mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function throughÂAMBRA1 and TRAF6. Nature Cell Biology, 2013, 15, 406-416.	4.6	662
89	Interplay between autophagy and apoptosis in the development of Danio rerio follicles and the effects of a probiotic. Reproduction, Fertility and Development, 2013, 25, 1115.	0.1	59
90	Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death and Disease, 2013, 4, e940-e940.	2.7	16

#	Article	IF	CITATIONS
91	A New Transcriptional Repressor of the Pseudomonas aeruginosa Quorum Sensing Receptor Gene lasR. PLoS ONE, 2013, 8, e69554.	1.1	21
92	Dismantling the autophagic arsenal when it is time to die. Autophagy, 2012, 8, 1255-1257.	4.3	15
93	Specific T Cells Restore the Autophagic Flux Inhibited by Mycobacterium tuberculosis in Human Primary Macrophages. Journal of Infectious Diseases, 2012, 205, 1425-1435.	1.9	44
94	Type 2 transglutaminase is involved in the autophagy-dependent clearance of ubiquitinated proteins. Cell Death and Differentiation, 2012, 19, 1228-1238.	5.0	62
95	Liver Protein Profiling in Chronic Hepatitis C: Identification of Potential Predictive Markers for Interferon Therapy Outcome. Journal of Proteome Research, 2012, 11, 717-727.	1.8	17
96	Beclin1: A role in membrane dynamics and beyond. Autophagy, 2012, 8, 6-17.	4.3	262
97	An Immunosurveillance Mechanism Controls Cancer Cell Ploidy. Science, 2012, 337, 1678-1684.	6.0	367
98	ESX-1 dependent impairment of autophagic flux by <i><i>Mycobacterium tuberculosis</i></i> in human dendritic cells. Autophagy, 2012, 8, 1357-1370.	4.3	237
99	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
100	Autophagy Protects Cells From HCV-Induced Defects in Lipid Metabolism. Gastroenterology, 2012, 142, 644-653.e3.	0.6	66
101	Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death and Differentiation, 2012, 19, 1495-1504.	5.0	134
102	Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO Journal, 2011, 30, 1195-1208.	3.5	206
103	The DNA repair complex Ku70/86 modulates Apaf1 expression upon DNA damage. Cell Death and Differentiation, 2011, 18, 516-527.	5.0	22
104	Oncogenic B-RAF Signaling in Melanoma Impairs the Therapeutic Advantage of Autophagy Inhibition. Clinical Cancer Research, 2011, 17, 2216-2226.	3.2	61
105	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Regulates Autophagy in Cultured Astrocytes. Journal of Biological Chemistry, 2011, 286, 27875-27881.	1.6	109
106	Unleashing the Ambra1-Beclin 1 complex from dynein chains: Ulk1 sets Ambra1 free to induce autophagy. Autophagy, 2011, 7, 115-117.	4.3	51
107	Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. Journal of Experimental Medicine, 2011, 208, 1823-1834.	4.2	156
108	Proteomic analysis identifies prohibitin down-regulation as a crucial event in the mitochondrial damage observed in HIV-infected patients. Antiviral Therapy, 2010, 15, 377-390.	0.6	20

#	Article	IF	CITATIONS
109	Regulation of autophagy in mammals and its interplay with apoptosis. Cellular and Molecular Life Sciences, 2010, 67, 1581-1588.	2.4	174
110	The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO Journal, 2010, 29, 1235-1247.	3.5	117
111	A brain-specific isoform of mitochondrial apoptosis-inducing factor: AIF2. Cell Death and Differentiation, 2010, 17, 1155-1166.	5.0	37
112	Transcriptional control of the <i>pvdS</i> iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2010, 12, 1630-1642.	1.8	70
113	The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. Journal of Cell Biology, 2010, 191, 155-168.	2.3	432
114	Lysyl tRNA synthetase is required for the translocation of calreticulin to the cell surface in immunogenic death. Cell Cycle, 2010, 9, 3144-3149.	1.3	25
115	Proteomic analysis of mitochondrial dysfunction in neurodegenerative diseases. Expert Review of Proteomics, 2010, 7, 519-542.	1.3	23
116	Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes. Journal of Hepatology, 2010, 52, 234-243.	1.8	11
117	Transglutaminase 2 is involved in autophagosome maturation. Autophagy, 2009, 5, 1145-1154.	4.3	89
118	Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. Journal of Clinical Investigation, 2009, 119, 1359-1372.	3.9	585
119	Analysis of the periplasmic proteome of <i>Pseudomonas aeruginosa</i> , a metabolically versatile opportunistic pathogen. Proteomics, 2009, 9, 1901-1915.	1.3	81
120	Toward the understanding of autophagy regulation and its interplay with cell death pathways. Cell Death and Differentiation, 2009, 16, 933-934.	5.0	16
121	The involvement of cell death and survival in neural tube defects: a distinct role for apoptosis and autophagy?. Cell Death and Differentiation, 2008, 15, 1170-1177.	5.0	54
122	The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death and Differentiation, 2008, 15, 1499-1509.	5.0	298
123	Fenretinide induces autophagic cell death in caspase-defective breast cancer cells. Autophagy, 2008, 4, 435-441.	4.3	65
124	A Novel Role for Autophagy in Neurodevelopment. Autophagy, 2007, 3, 505-507.	4.3	54
125	Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF. Proteomics, 2007, 7, 143-154.	1.3	48
126	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	15.2	2,580

#	Article	IF	CITATIONS
127	Targeting homeostatic mechanisms of endoplasmic reticulum stress to increase susceptibility of cancer cells to fenretinide-induced apoptosis: the role of stress proteins ERdj5 and ERp57. British Journal of Cancer, 2007, 96, 1062-1071.	2.9	105
128	Ambra1 regulates autophagy and development of the nervous system. Nature, 2007, 447, 1121-1125.	13.7	889
129	Transglutaminase 2 ablation leads to defective function of mitochondrial respiratory complex I affecting neuronal vulnerability in experimental models of extrapyramidal disorders. Journal of Neurochemistry, 2007, 100, 36-49.	2.1	57
130	Immunogenic chemotherapy: discovery of a critical protein through proteomic analyses of tumor cells. Cancer Genomics and Proteomics, 2007, 4, 65-70.	1.0	11
131	"Tissue―transglutaminase contributes to the formation of disulphide bridges in proteins of mitochondrial respiratory complexes. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1357-1365.	0.5	67
132	Proteomic analysis of anti-angiogenic effects by a combined treatment with vinblastine and rapamycin in an endothelial cell line. Proteomics, 2006, 6, 4420-4431.	1.3	20
133	Activation of VÎ ³ 9VÎ [^] 2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. International Immunology, 2006, 18, 11-18.	1.8	56
134	Conventional Protein Kinase C Inhibition Prevents Alpha Interferon-Mediated Hepatitis C Virus Replicon Clearance by Impairing STAT Activation. Journal of Virology, 2004, 78, 12809-12816.	1.5	21
135	Tissue Transglutaminase Is a Multifunctional BH3-only Protein. Journal of Biological Chemistry, 2004, 279, 54783-54792.	1.6	85
136	Inhibition of HIVâ€l Replication in Monocyteâ€Derived Macrophages byMycobacterium tuberculosis. Journal of Infectious Diseases, 2004, 189, 624-633.	1.9	39
137	Production of fertile offspring from genetically infertile male mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1691-1695.	3.3	49
138	Murine hepatocyte cell lines promote expansion and differentiation of NK cells from stem cell precursors. Hepatology, 2004, 39, 1508-1516.	3.6	15
139	Transgenic models for Hepatitis C virus pathogenesis. Cell Death and Differentiation, 2003, 10, S16-S18.	5.0	11
140	Transglutaminase Type II Plays a Protective Role in Hepatic Injury. American Journal of Pathology, 2003, 162, 1293-1303.	1.9	68
141	Transcriptional Control in Male Germ Cells: General Factor TFIIA Participates in CREM-Dependent Gene Activation. Molecular Endocrinology, 2003, 17, 2554-2565.	3.7	35
142	Mitotic Phosphorylation of Histone H3: Spatio-Temporal Regulation by Mammalian Aurora Kinases. Molecular and Cellular Biology, 2002, 22, 874-885.	1.1	577
143	CREM-Dependent Transcription in Male Germ Cells Controlled by a Kinesin. Science, 2002, 298, 2388-2390.	6.0	111
144	The rate of aneuploidy is altered in spermatids from infertile mice. Human Reproduction, 2002, 17, 710-717.	0.4	28

GIAN MARIA FIMIA

#	Article	IF	CITATIONS
145	Tissue transglutaminase in hepatitis C pathogenesis. Journal of Hepatology, 2002, 36, 91.	1.8	1
146	Cloning and Expression of Activator of CREM in Testis in Human Testicular Tissue. Biochemical and Biophysical Research Communications, 2001, 283, 406-411.	1.0	18
147	Transcriptional cascades during spermatogenesis: pivotal role of CREM and ACT. Molecular and Cellular Endocrinology, 2001, 179, 17-23.	1.6	45
148	Late Arrest of Spermiogenesis and Germ Cell Apoptosis in Mice Lacking the TBP-like TLF/TRF2 Gene. Molecular Cell, 2001, 7, 509-515.	4.5	176
149	Cyclic AMP signalling. Journal of Cell Science, 2001, 114, 1971-2.	1.2	102
150	A Family of LIM-Only Transcriptional Coactivators: Tissue-Specific Expression and Selective Activation of CREB and CREM. Molecular and Cellular Biology, 2000, 20, 8613-8622.	1.1	186
151	CREM, a master-switch of the transcriptional cascade in male germ cells. Journal of Endocrinological Investigation, 2000, 23, 592-596.	1.8	45
152	Routes of Transcriptional Activation in the Testis: CREM and its Co-Activator ACT. , 2000, , 107-128.		0
153	Cyclic Adenosine 3′,5′-Monophosphate(cAMP)/cAMP-Responsive Element Modulator (CREM)-Dependent Regulation of Cholesterogenic Lanosterol 14α-Demethylase (CYP51) in Spermatids. Molecular Endocrinology, 1999, 13, 1951-1962.	3.7	68
154	CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature, 1999, 398, 165-169.	13.7	216
155	Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends in Biochemical Sciences, 1999, 24, 281-285.	3.7	281
156	Cyclic Adenosine 3',5'-Monophosphate(cAMP)/cAMP-Responsive Element Modulator (CREM)-Dependent Regulation of Cholesterogenic Lanosterol 14Â-Demethylase (CYP51) in Spermatids. Molecular Endocrinology, 1999, 13, 1951-1962.	3.7	48
157	The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts. Molecular Biology of the Cell, 1998, 9, 1449-1463.	0.9	29
158	Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13612-13617.	3.3	768
159	Mechanisms of Activation by CREB and CREM: Phosphorylation, CBP, and a Novel Coactivator, ACT. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63, 631-642.	2.0	14
160	Double-stranded Internucleosomal Cleavage of Apoptotic DNA Is Dependent on the Degree of Differentiation in Muscle Cells. Journal of Biological Chemistry, 1996, 271, 15575-15579.	1.6	24
161	A Polyomavirus Enhancer Mutant Confers Ubiquitous High Transcriptional Efficiency to the SV40 Late Promoter. Biochemical and Biophysical Research Communications, 1995, 207, 339-347.	1.0	2
162	Retinoblastoma antioncogene is involved in the inhibition of myogenesis by polyomavirus large T antigen. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1994, 5, 231-7.	0.8	23

#	Article	IF	CITATIONS
163	Inhibition of in vitro myogenic differentiation by a polyomavirus early function. Oncogene, 1992, 7, 85-93.	2.6	29
164	Inhibition of in vitro muscle differentiation by the immortalizing oncogene py LT-ag. Symposia of the Society for Experimental Biology, 1992, 46, 53-71.	0.0	1