Zhengwang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9305939/publications.pdf

Version: 2024-02-01

516710 501196 60 984 16 28 citations g-index h-index papers 62 62 62 935 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Benchmark on Automatic Six-Month-Old Infant Brain Segmentation Algorithms: The iSeg-2017 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 2219-2230.	8.9	136
2	Computational neuroanatomy of baby brains: A review. NeuroImage, 2019, 185, 906-925.	4.2	125
3	Developmental topography of cortical thickness during infancy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15855-15860.	7.1	82
4	Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis. Lecture Notes in Computer Science, 2018, 11072, 411-419.	1.3	61
5	Harmonization of Infant Cortical Thickness Using Surface-to-Surface Cycle-Consistent Adversarial Networks. Lecture Notes in Computer Science, 2019, 11767, 475-483.	1.3	39
6	Spherical U-Net on Cortical Surfaces: Methods and Applications. Lecture Notes in Computer Science, 2019, 11492, 855-866.	1.3	37
7	Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patchâ€based groupâ€wise sparse representation. Human Brain Mapping, 2019, 40, 3860-3880.	3.6	31
8	Disentangled-Multimodal Adversarial Autoencoder: Application to Infant Age Prediction With Incomplete Multimodal Neuroimages. IEEE Transactions on Medical Imaging, 2020, 39, 4137-4149.	8.9	27
9	Mapping hemispheric asymmetries of the macaque cerebral cortex during early brain development. Human Brain Mapping, 2020, 41, 95-106.	3.6	26
10	Robust brain ROI segmentation by deformation regression and deformable shape model. Medical Image Analysis, 2018, 43, 198-213.	11.6	25
11	Exploring folding patterns of infant cerebral cortex based on multi-view curvature features: Methods and applications. Neurolmage, 2019, 185, 575-592.	4.2	25
12	Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Human Brain Mapping, 2020, 41, 1985-2003.	3.6	25
13	Learning longitudinal classification-regression model for infant hippocampus segmentation. Neurocomputing, 2020, 391, 191-198.	5.9	24
14	Correlation Between Hippocampus MRI Radiomic Features and Resting-State Intrahippocampal Functional Connectivity in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 435.	2.8	22
15	Registration-Free Infant Cortical Surface Parcellation Using Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2018, 11072, 672-680.	1.3	21
16	Anatomyâ€guided joint tissue segmentation and topological correction for 6â€month infant brain MRI with risk of autism. Human Brain Mapping, 2018, 39, 2609-2623.	3.6	20
17	Topological correction of infant white matter surfaces using anatomically constrained convolutional neural network. Neurolmage, 2019, 198, 114-124.	4.2	18
18	Hierarchical Rough-to-Fine Model for Infant Age Prediction Based on Cortical Features. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 214-225.	6.3	18

#	Article	IF	CITATIONS
19	Infant Brain Development Prediction With Latent Partial Multi-View Representation Learning. IEEE Transactions on Medical Imaging, 2019, 38, 909-918.	8.9	17
20	Existence of Functional Connectome Fingerprint during Infancy and Its Stability over Months. Journal of Neuroscience, 2022, 42, 377-389.	3.6	17
21	4D Infant Cortical Surface Atlas Construction Using Spherical Patch-Based Sparse Representation. Lecture Notes in Computer Science, 2017, 10433, 57-65.	1.3	15
22	DIKA-Nets: Domain-invariant knowledge-guided attention networks for brain skull stripping of early developing macaques. NeuroImage, 2021, 227, 117649.	4.2	14
23	The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. Neurolmage, 2021, 238, 118232.	4.2	14
24	A 4D infant brain volumetric atlas based on the UNC/UMN baby connectome project (BCP) cohort. Neurolmage, 2022, 253, 119097.	4.2	13
25	Surface-constrained volumetric registration for the early developing brain. Medical Image Analysis, 2019, 58, 101540.	11.6	11
26	Maternal Obesity during Pregnancy is Associated with Lower Cortical Thickness in the Neonate Brain. American Journal of Neuroradiology, 2021, 42, 2238-2244.	2.4	11
27	Recurrent Tissue-Aware Network for Deformable Registration of Infant Brain MR Images. IEEE Transactions on Medical Imaging, 2022, 41, 1219-1229.	8.9	11
28	Construction of spatiotemporal infant cortical surface atlas of rhesus macaque., 2018, 2018, 704-707.		10
29	Construction of spatiotemporal neonatal cortical surface atlases using a large-scale dataset., 2018, 2018, 1056-1059.		7
30	ABCnet: Adversarial bias correction network for infant brain MR images. Medical Image Analysis, 2021, 72, 102133.	11.6	6
31	Spherical U-Net For Infant Cortical Surface Parcellation. , 2019, 2019, 1882-1886.		5
32	Path Signature Neural Network of Cortical Features for Prediction of Infant Cognitive Scores. IEEE Transactions on Medical Imaging, 2022, 41, 1665-1676.	8.9	5
33	Deep learning in cortical surface-based neuroimage analysis: a systematic review. Intelligent Medicine, 2023, 3, 46-58.	3.1	5
34	Surface-Volume Consistent Construction of Longitudinal Atlases for the Early Developing Brain. Lecture Notes in Computer Science, 2019, 11765, 815-822.	1.3	4
35	Intrinsic Patch-Based Cortical Anatomical Parcellation Using Graph Convolutional Neural Network on Surface Manifold. Lecture Notes in Computer Science, 2019, 11766, 492-500.	1.3	4
36	Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age. NeuroImage, 2022, 247, 118799.	4.2	4

3

#	Article	lF	CITATIONS
37	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface in infants. Medical Image Analysis, 2018, 49, 46-59.	11.6	3
38	Cortical Foldingprints for Infant Identification. , 2019, 2019, 396-399.		3
39	Siamese Verification Framework for Autism Identification During Infancy Using Cortical Path Signature Features., 2020, 2020, .		3
40	Learning Spatiotemporal Probabilistic Atlas of Fetal Brains with Anatomically Constrained Registration Network. Lecture Notes in Computer Science, 2021, 12907, 239-248.	1.3	3
41	Infant Cognitive Scores Prediction with Multi-stream Attention-Based Temporal Path Signature Features. Lecture Notes in Computer Science, 2020, 12267, 134-144.	1.3	3
42	A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation. Lecture Notes in Computer Science, 2020, 12267, 646-656.	1.3	3
43	Disentangled Intensive Triplet Autoencoder for Infant Functional Connectome Fingerprinting. Lecture Notes in Computer Science, 2020, 12267, 72-82.	1.3	3
44	Developmental abnormalities of structural covariance networks of cortical thickness and surface area in autistic infants within the first 2Âyears. Cerebral Cortex, 2022, 32, 3786-3798.	2.9	3
45	A computational method for longitudinal mapping of orientation-specific expansion of cortical surface area in infants., 2018, 2018, 683-686.		2
46	Infant brain development prediction with latent partial multi-view representation learning. , 2018, 2018, 1048-1051.		2
47	Construction of 4D Neonatal Cortical Surface Atlases Using Wasserstein Distance. , 2019, 2019, 995-998.		2
48	Construction of Longitudinally Consistent 4D Infant Cerebellum Atlases Based onÂDeep Learning. Lecture Notes in Computer Science, 2021, 12904, 139-149.	1.3	2
49	Unsupervised Learning for Spherical Surface Registration. Lecture Notes in Computer Science, 2020, 12436, 373-383.	1.3	2
50	Automatic Hippocampal Subfield Segmentation from 3T Multi-modality Images. Lecture Notes in Computer Science, 2016, 10019, 229-236.	1.3	2
51	Revealing Developmental Regionalization of Infant Cerebral Cortex Based on Multiple Cortical Properties. Lecture Notes in Computer Science, 2019, 11765, 841-849.	1.3	2
52	Deep Granular Feature-Label Distribution Learning for Neuroimaging-Based Infant Age Prediction. Lecture Notes in Computer Science, 2019, 11767, 149-157.	1.3	2
53	A Computational Framework for Dissociating Development-Related from Individually Variable Flexibility in Regional Modularity Assignment in Early Infancy. Lecture Notes in Computer Science, 2020, 12267, 13-21.	1.3	2
54	Spherical Transformer for Quality Assessment of Pediatric Cortical Surfaces., 2022, 2022, .		2

#	Article	lF	CITATIONS
55	Learning Infant Brain Developmental Connectivity for Cognitive Score Prediction. Lecture Notes in Computer Science, 2021, , 228-237.	1.3	1
56	Automated Parcellation of the Cortex Using Structural Connectome Harmonics. Lecture Notes in Computer Science, 2019, 11766, 475-483.	1.3	1
57	Construction of Spatiotemporal Infant Cortical Surface Functional Templates. Lecture Notes in Computer Science, 2020, 12267, 238-248.	1.3	1
58	Charting Development-Based Joint Parcellation Maps Of Human and Macaque Brains During Infancy. , 2019, 2019, 422-425.		0
59	Regression Guided Deformable Models for Segmentation of Multiple Brain ROIs. Lecture Notes in Computer Science, 2016, 10019, 237-245.	1.3	0
60	Surface-based analysis of the developing cerebral cortex. Advances in Magnetic Resonance Technology and Applications, 2021, , 287-307.	0.1	0