Jayasree Chakraborty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9304975/publications.pdf

Version: 2024-02-01

516710 434195 1,199 67 16 31 citations h-index g-index papers 67 67 67 1466 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Survival Prediction in Pancreatic Ductal Adenocarcinoma by Quantitative Computed Tomography Image Analysis. Annals of Surgical Oncology, 2018, 25, 1034-1042.	1.5	92
2	<scp>CT</scp> radiomics to predict highâ€risk intraductal papillary mucinous neoplasms of the pancreas. Medical Physics, 2018, 45, 5019-5029.	3.0	76
3	Radiomics-based prediction of microsatellite instability in colorectal cancer at initial computed tomography evaluation. Abdominal Radiology, 2019, 44, 3755-3763.	2.1	74
4	Preliminary study of tumor heterogeneity in imaging predicts two year survival in pancreatic cancer patients. PLoS ONE, 2017, 12, e0188022.	2.5	69
5	Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma Using Quantitative Image Analysis. Journal of the American College of Surgeons, 2017, 225, 778-788e1.	0.5	66
6	Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility. Journal of Medical Imaging, 2018, 5, 1.	1.5	61
7	Brain Tumor Classification Using ResNet-101 Based Squeeze and Excitation Deep Neural Network. , 2019,		60
8	Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. European Radiology, 2020, 30, 195-205.	4.5	58
9	Cooperative multi-robot path planning using differential evolution. Journal of Intelligent and Fuzzy Systems, 2009, 20, 13-27.	1.4	57
10	Automatic Detection of Pectoral Muscle Using Average Gradient and Shape Based Feature. Journal of Digital Imaging, 2012, 25, 387-399.	2.9	50
11	Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdominal Radiology, 2018, 43, 3271-3278.	2.1	46
12	Computer-aided detection and diagnosis of mammographic masses using multi-resolution analysis of oriented tissue patterns. Expert Systems With Applications, 2018, 99, 168-179.	7.6	38
13	CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdominal Radiology, 2019, 44, 3148-3157.	2.1	37
14	Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis. Hpb, 2019, 21, 212-218.	0.3	36
15	Distributed cooperative multi-robot path planning using differential evolution. , 2008, , .		30
16	Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer. Journal of Electronic Imaging, 2012, 21, 033010-1.	0.9	27
17	Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 826-834.	6.3	26
18	Measures of divergence of oriented patterns for the detection of architectural distortion in prior mammograms. International Journal of Computer Assisted Radiology and Surgery, 2013, 8, 527-545.	2.8	23

#	Article	IF	Citations
19	Classification of benign and malignant masses in mammograms using multi-resolution analysis of oriented patterns. , 2015 , , .		18
20	A Heuristic Approach to Automated Nipple Detection in Digital Mammograms. Journal of Digital Imaging, 2013, 26, 932-940.	2.9	16
21	Computer-Aided Detection of Mammographic Masses Using Hybrid Region Growing Controlled by Multilevel Thresholding. Journal of Medical and Biological Engineering, 2019, 39, 352-366.	1.8	15
22	Differences in Liver Parenchyma are Measurable with CT Radiomics at Initial Colon Resection in Patients that Develop Hepatic Metastases from Stage II/III Colon Cancer. Annals of Surgical Oncology, 2021, 28, 1982-1989.	1.5	15
23	Automatic characterization of masses in mammograms. , 2013, , .		14
24	A Study of Different Texture Features Based on Local Operator for Benign-malignant Mass Classification. Procedia Computer Science, 2016, 93, 389-395.	2.0	14
25	Analysis of 2D singularities for mammographic mass classification. IET Computer Vision, 2017, 11, 22-32.	2.0	13
26	Rotation and translation selective Pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II. , 2009, , .		12
27	Recurrence After Resection of Pancreatic Cancer: Can Radiomics Predict Patients at Greatest Risk of Liver Metastasis?. Annals of Surgical Oncology, 2022, 29, 4962-4974.	1.5	11
28	Detection of architectural distortion in prior mammograms using statistical measures of orientation of texture. Proceedings of SPIE, 2012, , .	0.8	10
29	Quantitative imaging features of pretreatment CT predict volumetric response to chemotherapy in patients with colorectal liver metastases. European Radiology, 2019, 29, 458-467.	4.5	10
30	MhURI:A Supervised Segmentation Approach to Leverage Salient Brain Tissues in Magnetic Resonance Images. Computer Methods and Programs in Biomedicine, 2021, 200, 105841.	4.7	10
31	Detection of masses in mammograms using region growing controlled by multilevel thresholding. , 2012, , .		8
32	Detection of the nipple in mammograms with Gabor filters and the Radon transform. Biomedical Signal Processing and Control, 2015, 15, 80-89.	5.7	8
33	Edge Weighted Local Texture Features for the Categorization of Mammographic Masses. Journal of Medical and Biological Engineering, 2018, 38, 457-468.	1.8	8
34	Multimodal radiomics and cyst fluid inflammatory markers model to predict preoperative risk in intraductal papillary mucinous neoplasms. Journal of Medical Imaging, 2020, 7, 1.	1.5	8
35	Face detection using skin color modeling and geometric feature. , 2014, , .		7
36	Quantitative Imaging Features and Postoperative Hepatic Insufficiency: A Multi-Institutional Expanded Cohort. Journal of the American College of Surgeons, 2018, 226, 835-843.	0.5	7

#	Article	IF	Citations
37	Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. Hpb, 2022, 24, 1341-1350.	0.3	7
38	A Screening CAD Tool for the Detection of Microcalcification Clusters in Mammograms. Journal of Digital Imaging, 2019, 32, 728-745.	2.9	6
39	Dynamic background modeling using intensity and orientation distribution of video sequence. Multimedia Tools and Applications, 2019, 78, 22537-22554.	3.9	6
40	Deep convolutional neural network for the classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. , 2018, , .		6
41	A Multi-Objective Pareto-Optimal Solution to the Box-Pushing Problem by Mobile Robots. , 2008, , .		5
42	A robust cooperative multi-robot path-planning in noisy environment. , 2010, , .		5
43	Quantitative Computed Tomography Image Analysis to Predict Pancreatic Neuroendocrine Tumor Grade. JCO Clinical Cancer Informatics, 2021, 5, 679-694.	2.1	5
44	Texture analysis for survival prediction of pancreatic ductal adenocarcinoma patients with neoadjuvant chemotherapy. , $2016, \dots$		4
45	Quantification of CT images for the classification of high- and low-risk pancreatic cysts. Proceedings of SPIE, 2017, , .	0.8	4
46	A multi features based background modeling approach for moving object detection. Optik, 2022, 260, 168980.	2.9	4
47	Detection of architectural distortion using coherence in relation to the expected orientation of breast tissue. , 2012, , .		3
48	Multi-resolution analysis using integrated microscopic configuration with local patterns for benign-malignant mass classification. , 2018, , .		3
49	Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis. Hpb, 2017, 19, S48.	0.3	2
50	Texture analysis of gradient images for benign-malignant mass classification. , 2017, , .		2
51	Automatic localization of the nipple in mammograms using Gabor filters and the Radon transform. , 2013, , .		1
52	Video error concealment using Speeded Up Robust Features and affine transformation. , 2014, , .		1
53	Benign-malignant mass classification in mammogram using edge weighted local texture features. , 2016, , .		1
54	Video error concealment through 3-D face model. Multimedia Tools and Applications, 2017, 76, 23931-23955.	3.9	1

#	Article	IF	CITATIONS
55	Enhancement of Hazy Images Using Atmospheric Light Estimation Technique. Journal of Circuits, Systems and Computers, 2021, 30, 2150078.	1.5	1
56	Abstract 2444: The use of CT radiomics to predict immune infiltrate in pancreatic ductal adenocarcinoma. , 2019, , .		1
57	A combined radiomics and cyst fluid inflammatory markers model to predict preoperative risk in pancreatic cystic lesions. , 2020, , .		1
58	Preoperative assessment of microvascular invasion in hepatocellular carcinoma., 2017,,.		0
59	Behind the cyst: predicting grade of dysplasia in intraductal papillary mucinous neoplasms (IPMNs) by quantitative image analysis. Hpb, 2017, 19, S22.	0.3	O
60	Quantitative Imaging Features of Preoperative Computed Tomography Images Predict Post-Hepatectomy Liver Insufficiency: A Multi-Institutional Expansion Cohort. Journal of the American College of Surgeons, 2017, 225, S137.	0.5	0
61	A Deep Adaptive Convolutional Network for Brain Tumor Segmentation from Multimodal MR Images. , 2019, , .		0
62	Multi-Resolution Analysis of Edge-Texture Features for Mammographic Mass Classification. Journal of Circuits, Systems and Computers, 2020, 29, 2050156.	1.5	0
63	Quantitative CT analysis for the preoperative prediction of pathologic grade in pancreatic neuroendocrine tumors. , 2018 , , .		0
64	Rectal MRI radiomics inter- and intra-reader reliability: should we worry about that?. Abdominal Radiology, 2022, , .	2.1	0
65	CT radiomics to predict early hepatic recurrence after resection for intrahepatic cholangiocarcinoma., 2022,,.		0
66	ASO Visual Abstract: Recurrence After Resection of Pancreatic Cancer – Can Radiomics Predict Patients at Greatest Risk of LiverÂMetastasis?. Annals of Surgical Oncology, 2022, , .	1,5	0
67	Abstract 2444: The use of CT radiomics to predict immune infiltrate in pancreatic ductal adenocarcinoma. , 2019, , .		O