Pascal F Egea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9304015/publications.pdf

Version: 2024-02-01

304743 361022 3,370 37 22 35 h-index citations g-index papers 37 37 37 4333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Moving Lipids, by the Numbers. Contact (Thousand Oaks (Ventura County, Calif)), 2022, 5, 251525642211030.	1.3	1
2	Highlighting membrane protein structure and function: AÂcelebration of the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100557.	3.4	42
3	Mechanisms of Non-Vesicular Exchange of Lipids at Membrane Contact Sites: Of Shuttles, Tunnels and, Funnels. Frontiers in Cell and Developmental Biology, 2021, 9, 784367.	3.7	17
4	Crossing the Vacuolar Rubicon: Structural Insights into Effector Protein Trafficking in Apicomplexan Parasites. Microorganisms, 2020, 8, 865.	3.6	18
5	Malaria parasite translocon structure and mechanism of effector export. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, a32-a32.	0.1	O
6	Native and Denaturing MS Protein Deconvolution for Biopharma: Monoclonal Antibodies and Antibody–Drug Conjugates to Polydisperse Membrane Proteins and Beyond. Analytical Chemistry, 2019, 91, 9472-9480.	6.5	32
7	Structure of the human ClC-1 chloride channel. PLoS Biology, 2019, 17, e3000218.	5.6	66
8	Determining the Lipid-Binding Specificity of SMP Domains: An ERMES Subunit as a Case Study. Methods in Molecular Biology, 2019, 1949, 213-235.	0.9	6
9	Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry as a Platform for Characterizing Multimeric Membrane Protein Complexes. Journal of the American Society for Mass Spectrometry, 2018, 29, 183-193.	2.8	29
10	Rapid LC–MS Method for Accurate Molecular Weight Determination of Membrane and Hydrophobic Proteins. Analytical Chemistry, 2018, 90, 13616-13623.	6.5	12
11	Malaria parasite translocon structure and mechanism of effector export. Nature, 2018, 561, 70-75.	27.8	169
12	Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies. Biochemical and Biophysical Research Communications, 2017, 488, 129-135.	2.1	23
13	Structure of a putative ClpS Nâ€end rule adaptor protein from the malaria pathogen <scp><i>P</i><5, 689-701.</scp>	7.6	20
14	Structural mapping of the <scp>C</scp> lp <scp>B</scp> <scp>ATP</scp> ases of <i>Plasmodium falciparum</i> : Targeting protein folding and secretion for antimalarial drug design. Protein Science, 2015, 24, 1508-1520.	7.6	20
15	Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3179-88.	7.1	174
16	The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell Host and Microbe, 2015, 17, 642-652.	11.0	208
17	Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex. Biochemical and Biophysical Research Communications, 2015, 456, 403-409.	2.1	18
18	Insights into the Mechanism of Bovine CD38/NAD+Glycohydrolase from the X-Ray Structures of Its Michaelis Complex and Covalently-Trapped Intermediates. PLoS ONE, 2012, 7, e34918.	2.5	21

#	Article	IF	CITATIONS
19	Structural and functional basis for RNA cleavage by Ire1. BMC Biology, 2011, 9, 47.	3.8	61
20	Cofactor-mediated conformational control in the bifunctional kinase/RNase Ire1. BMC Biology, 2011, 9, 48.	3.8	51
21	Peptide Length and Leaving-Group Sterics Influence Potency of Peptide Phosphonate Protease Inhibitors. Chemistry and Biology, 2011, 18, 48-57.	6.0	17
22	Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17182-17187.	7.1	155
23	The unfolded protein response signals through high-order assembly of Ire1. Nature, 2009, 457, 687-693.	27.8	565
24	Structure of an Fab–Protease Complex Reveals a Highly Specific Non-canonical Mechanism of Inhibition. Journal of Molecular Biology, 2008, 380, 351-360.	4.2	55
25	Structures of SRP54 and SRP19, the Two Proteins that Organize the Ribonucleic Core of the Signal Recognition Particle from Pyrococcus furiosus. PLoS ONE, 2008, 3, e3528.	2.5	21
26	Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane. PLoS ONE, 2008, 3, e3619.	2.5	21
27	Targeting proteins to membranes: structure of the signal recognition particle. Current Opinion in Structural Biology, 2005, 15, 213-220.	5.7	206
28	Unraveling the interface of signal recognition particle and its receptor by using chemical cross-linking and tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16454-16459.	7.1	72
29	Substrate twinning activates the signal recognition particle and its receptor. Nature, 2004, 427, 215-221.	27.8	270
30	Architecture and Selectivity in Aquaporins: 2.5 \tilde{A} X-Ray Structure of Aquaporin Z. PLoS Biology, 2003, 1, e72.	5.6	248
31	Molecular Recognition of Agonist Ligands by RXRs. Molecular Endocrinology, 2002, 16, 987-997.	3.7	154
32	Molecular Recognition of Agonist Ligands by RXRs. Molecular Endocrinology, 2002, 16, 987-997.	3.7	48
33	Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR11Edited by M. F. Moody. Journal of Molecular Biology, 2001, 307, 557-576.	4.2	88
34	Functional and structural characterization of the insertion region in the ligand binding domain of the vitamin D nuclear receptor. FEBS Journal, 2001, 268, 971-979.	0.2	74
35	Purification and crystallization of the human RXRα ligand-binding domain–9-cisRA complex. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 434-437.	2.5	8
36	Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO Journal, 2000, 19, 2592-2601.	7.8	293

3

PASCAL F EGEA

#	Article	IF	CITATIONS
37	Ligand-protein interactions in nuclear receptors of hormones. FEBS Letters, 2000, 476, 62-67.	2.8	87