
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9303899/publications.pdf Version: 2024-02-01

Διίετα Ενιές

#	Article	IF	CITATIONS
1	Induced resistance to pests and pathogens in trees. New Phytologist, 2010, 185, 893-908.	7.3	256
2	Phenolic Metabolites in Leaves of the Invasive Shrub, Lonicera maackii, and Their Potential Phytotoxic and Anti-Herbivore Effects. Journal of Chemical Ecology, 2008, 34, 144-152.	1.8	133
3	Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2019, 59, 411-422.	10.3	117
4	Comparative Phloem Chemistry of Manchurian (Fraxinus mandshurica) and Two North American Ash Species (Fraxinus americana and Fraxinus pennsylvanica). Journal of Chemical Ecology, 2007, 33, 1430-1448.	1.8	110
5	Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 2009, 29, 753-764.	3.1	110
6	Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytologist, 2008, 177, 767-778.	7.3	106
7	Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diplodia scrobiculata. Tree Physiology, 2007, 27, 511-517.	3.1	65
8	Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three <i>Brassica</i> species. Physiologia Plantarum, 2016, 158, 135-151.	5.2	58
9	Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships?. Plant, Cell and Environment, 2011, 34, 1652-1665.	5.7	49
10	Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings. Journal of Experimental Botany, 2013, 64, 1625-1636.	4.8	49
11	Stable and Extreme Resistance to Common Scab of Potato Obtained Through Somatic Cell Selection. Phytopathology, 2010, 100, 460-467.	2.2	44
12	Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation. Tree Physiology, 2011, 31, 592-603.	3.1	41
13	Cross-induction of systemic induced resistance between an insect and a fungal pathogen in Austrian pine over a fertility gradient. Oecologia, 2007, 153, 365-374.	2.0	40
14	Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees - Structure and Function, 2015, 29, 1817-1826.	1.9	40
15	Wound wood formation in Eucalyptus globulus and Eucalyptus nitens: anatomy and chemistry. Canadian Journal of Forest Research, 2003, 33, 2331-2339.	1.7	38
16	Role of corticular photosynthesis following defoliation in <i>Eucalyptus globulus</i> . Plant, Cell and Environment, 2009, 32, 1004-1014.	5.7	38
17	Novel detection of formylated phloroglucinol compounds (FPCs) in the wound wood of Eucalyptus globulus and E. nitens. Journal of Chemical Ecology, 2003, 29, 881-898.	1.8	37
18	Phenolic Chemistry of Coast Live Oak Response to Phytophthora ramorum Infection. Journal of Chemical Ecology, 2007, 33, 1721-1732.	1.8	36

#	Article	IF	CITATIONS
19	Potato Tuber Greening: a Review of Predisposing Factors, Management and Future Challenges. American Journal of Potato Research, 2018, 95, 248-257.	0.9	35
20	Enhanced resistance to common scab of potato through somatic cell selection in cv. Iwa with the phytotoxin thaxtomin A. Plant Pathology, 2009, 58, 137-144.	2.4	34
21	Management of fungal rootâ€rot pathogens in tropical <i>Acacia mangium</i> plantations. Forest Pathology, 2008, 38, 332-355.	1.1	33
22	Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). Journal of Berry Research, 2019, 9, 687-707.	1.4	32
23	Host responses to natural infection byCytonaemasp. in the aerial bark ofEucalyptus globulus. Forest Pathology, 2003, 33, 317-331.	1.1	31
24	Impact of defoliation in temperate eucalypt plantations: Physiological perspectives and management implications. Forest Ecology and Management, 2013, 304, 49-64.	3.2	28
25	Systemic aspects of host–pathogen interactions in Austrian pine (Pinus nigra): A proteomics approach. Physiological and Molecular Plant Pathology, 2006, 68, 149-157.	2.5	27
26	Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladiere. Tree Physiology, 2012, 32, 24-35.	3.1	27
27	Predicting productivity of Acacia hybrid plantations for a range of climates and soils in Vietnam. Forest Ecology and Management, 2016, 367, 97-111.	3.2	27
28	Differential effects of nutrient availability on the secondary metabolism of Austrian pine (<i>Pinus) Tj ETQq0 0 C</i>) rgBT /Ove 1.1	erlock 10 Tf 5 26
29	Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control. Tree Physiology, 2012, 32, 1008-1020.	3.1	22
30	Quantifying stem growth loss at the tree-level in a Pinus radiata plantation to repeated attack by the aphid, Essigella californica. Forest Ecology and Management, 2011, 261, 120-127.	3.2	21
31	Kino vein formation inEucalyptus globulusandE. nitens. Australian Forestry, 2003, 66, 206-212.	0.9	18
32	Suberin deposition in potato periderm: a novel resistance mechanism against tuber greening. New Phytologist, 2020, 225, 1273-1284.	7.3	18
33	Screening for host responses in <i>Acacia</i> to a canker and wilt pathogen, <i>Ceratocystis manginecans</i> . Forest Pathology, 2018, 48, e12390.	1.1	17
34	Effects of Fertilization and Fungal and Insect Attack on Systemic Protein Defenses of Austrian Pine. Journal of Chemical Ecology, 2008, 34, 1392-1400.	1.8	16
35	Role ofEucalyptus globuluswound wood extractives: evidence of superoxide dismutase-like activity. Forest Pathology, 2004, 34, 225-232.	1.1	15

36Seasonal patterns of foliage respiration in dominant and suppressed Eucalyptus globulus canopies.3.115Tree Physiology, 2010, 30, 957-968.

#	Article	IF	CITATIONS
37	Contribution of Harvest Residues to Nutrient Cycling in a Tropical Acacia mangium Willd. Plantation. Forests, 2018, 9, 577.	2.1	15
38	Soil carbon sequestration in cool-temperate dryland pastures: mechanisms and management options. Soil Research, 2015, 53, 349.	1.1	14
39	Impact of biochar application on the productivity of a temperate vegetable cropping system. New Zealand Journal of Crop and Horticultural Science, 2017, 45, 277-288.	1.3	12
40	Traumatic oil glands induced by pruning in the wound-associated phloem of Eucalyptus globulus : chemistry and histology. Trees - Structure and Function, 2004, 18, 204-210.	1.9	11
41	Comparison of soil properties under tropical <i>Acacia</i> hybrid plantation and shifting cultivation land use in northern Vietnam. Southern Forests, 2017, 79, 9-18.	0.7	11
42	COMPARISON OF CEPA (2-CHLOROETHYL PHOSPHONIC ACID) INDUCED RESPONSES IN JUVENILE EUCALYPTUS NITENS, E. GLOBULUS AND E. OBLIQUA: A HISTOCHEMICAL AND ANATOMICAL STUDY. IAWA Journal, 2002, 23, 419-430.	2.7	10
43	Quantifying risk factors associated with light-induced potato tuber greening in retail stores. PLoS ONE, 2020, 15, e0235522.	2.5	6
44	Effect of Storage Conditions on Shelf Stability of Undiluted Neutral Electrolyzed Water. Journal of Food Protection, 2020, 83, 1838-1843.	1.7	6
45	Feasibility of Mechanical Pollination in Tree Fruit and Nut Crops: A Review. Agronomy, 2022, 12, 1113.	3.0	6
46	Ecophysiology ofAcaciaspecies in wet–dry tropical plantations. Southern Forests, 2015, 77, 287-296.	0.7	5
47	Impact of management regimes on fruit quality of sweet cherry (<i>Prunus avium</i> L.). Agroecology and Sustainable Food Systems, 2018, 42, 493-503.	1.9	5
48	Maximising growth and sawlog production from Acacia hybrid plantations in Vietnam. New Forests, 2019, 50, 785-804.	1.7	5
49	Potato Tuber Greening Risk is Associated with Tuber Nitrogen Content. American Journal of Potato Research, 2020, 97, 360-366.	0.9	5
50	Crown damage by the aphid <i>Essigella californica</i> in a <i>Pinus radiata</i> plantation in southern New South Wales: causality and related management issues. Australian Forestry, 2013, 76, 16-24.	0.9	4
51	Structural host responses of <i>Acacia mangium</i> and <i>Eucalyptus pellita</i> to artificial infection with the root rot pathogen, <i>Ganoderma philippii</i> . Forest Pathology, 2016, 46, 369-375.	1.1	4
52	Growth and physiology of <i>Hopea odorata</i> planted within gaps in an acacia plantation acting as a nurse crop. Plant Ecology and Diversity, 2016, 9, 549-562.	2.4	4
53	Prediction of starch reserves in intact and ground grapevine cane wood tissues using nearâ€infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2020, 100, 2418-2424.	3.5	4
54	Effect of peroxyacetic acid treatment and bruising on the bacterial community and shelf-life of baby spinach. International Journal of Food Microbiology, 2021, 343, 109086.	4.7	4

#	Article	IF	CITATIONS
55	Quantifying stem discoloration and decay following pruning and thinning an <i>Acacia</i> hybrid plantation. Forest Pathology, 2017, 47, e12312.	1.1	3
56	Impact of enhanced efficiency fertilizers on potato productivity in a temperate cropping system. Soil Use and Management, 2018, 34, 439-448.	4.9	3
57	Recovery after defoliation in Eucalyptus globulus saplings: respiration and growth. Trees - Structure and Function, 2016, 30, 1543-1555.	1.9	2
58	Removal of Grit from Baby Leafy Salad Vegetables by Combinations of Sanitiser and Surfactant. Journal of Food Quality, 2019, 2019, 1-8.	2.6	2
59	Effect of harvest residue management on soil properties of Eucalyptus hybrid and Acacia mangium plantations planted on steep slopes in northern Vietnam. Southern Forests, 2020, 82, 159-169.	0.7	0
60	Quantifying risk factors associated with light-induced potato tuber greening in retail stores. , 2020, 15, e0235522.		0
61	Quantifying risk factors associated with light-induced potato tuber greening in retail stores. , 2020, 15, e0235522.		0
62	Quantifying risk factors associated with light-induced potato tuber greening in retail stores. , 2020, 15, e0235522.		0
63	Quantifying risk factors associated with light-induced potato tuber greening in retail stores. , 2020, 15, e0235522.		О