
Jason W Hoskins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/930356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nature Communications, 2018, 9, 556.	12.8	188
2	Design of a Bioactive Small Molecule That Targets the Myotonic Dystrophy Type 1 RNA via an RNA Motif–Ligand Database and Chemical Similarity Searching. Journal of the American Chemical Society, 2012, 134, 4731-4742.	13.7	129
3	Rationally Designed Small Molecules Targeting the RNA That Causes Myotonic Dystrophy Type 1 Are Potently Bioactive. ACS Chemical Biology, 2012, 7, 856-862.	3.4	112
4	Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33. Human Molecular Genetics, 2014, 23, 6616-6633.	2.9	90
5	Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21. Oncotarget, 2016, 7, 66328-66343.	1.8	88
6	Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules. Nature Communications, 2013, 4, 2044.	12.8	76
7	5-Fluorouracil Enhances Exosome-Dependent Accumulation of Polyadenylated rRNAs. Molecular and Cellular Biology, 2004, 24, 10766-10776.	2.3	75
8	From dynamic combinatorial â€~hit' to lead: in vitro and in vivo activity of compounds targeting the pathogenic RNAs that cause myotonic dystrophy. Nucleic Acids Research, 2012, 40, 6380-6390.	14.5	69
9	A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. Journal of the National Cancer Institute, 2020, 112, 1003-1012.	6.3	59
10	Two high-throughput screening assays for aberrant RNA–protein interactions in myotonic dystrophy type 1. Analytical and Bioanalytical Chemistry, 2012, 402, 1889-1898.	3.7	49
11	CLPTM1L Promotes Growth and Enhances Aneuploidy in Pancreatic Cancer Cells. Cancer Research, 2014, 74, 2785-2795.	0.9	48
12	Transcriptome analysis of pancreatic cancer reveals a tumor suppressor function for HNF1A. Carcinogenesis, 2014, 35, 2670-2678.	2.8	46
13	Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Research, 2014, 42, 6591-6602.	14.5	46
14	Properties of Nat4, an <i>N</i> ^α -Acetyltransferase of <i>Saccharomyces cerevisiae</i> That Modifies N Termini of Histones H2A and H4. Molecular and Cellular Biology, 2009, 29, 2913-2924.	2.3	45
15	Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nature Communications, 2017, 8, 15034.	12.8	40
16	Evidence for distinct DNA―and RNAâ€based mechanisms of 5â€fluorouracil cytotoxicity in <i>Saccharomyces cerevisiae</i> . Yeast, 2007, 24, 861-870.	1.7	39
17	RNA-Based 5-Fluorouracil Toxicity Requires the Pseudouridylation Activity of Cbf5p. Genetics, 2008, 179, 323-330.	2.9	37
18	An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer. BMC Medical Genomics, 2013, 6, 33.	1.5	31

JASON W HOSKINS

#	Article	IF	CITATIONS
19	Characterising <i>cis</i> -regulatory variation in the transcriptome of histologically normal and tumour-derived pancreatic tissues. Gut, 2018, 67, 521-533.	12.1	26
20	Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on <i>DIS3</i> expression. Human Molecular Genetics, 2016, 25, ddw300.	2.9	24
21	A 584Âbp deletion in CTRB2 inhibits chymotrypsin B2 activity and secretion and confers risk of pancreatic cancer. American Journal of Human Genetics, 2021, 108, 1852-1865.	6.2	15
22	A Resequence Analysis of Genomic Loci on Chromosomes 1q32.1, 5p15.33, and 13q22.1 Associated With Pancreatic Cancer Risk. Pancreas, 2013, 42, 209-215.	1.1	5
23	Inferred expression regulator activities suggest genes mediating cardiometabolic genetic signals. PLoS Computational Biology, 2021, 17, e1009563.	3.2	3
24	Genetic Susceptibility and Risk of Pancreatic Cancer. , 2014, , 169-194.		0
25	Abstract B111: Functional analysis of the chr13q22.1 pancreatic cancer risk locus suggests allele-specific effects on DIS3 expression with prognostic implications. , 2015, , .		0
26	Abstract B112: Transcriptome analysis in pancreatic cancer reveals a tumor suppressor function for HNF1A. , 2015, , .		0
27	Abstract 4610: Functional characterization of a multicancer risk locus on chr5p15.33 reveals regulation ofTERTby ZNF148. , 2015, , .		Ο
28	Abstract A1-09: Functional analysis of the chr13q22.1 pancreatic cancer risk locus suggests allele-specific effects on DIS3 expression with prognostic implications. , 2015, , .		0
29	Abstract 1442: Analysis ofcis-eQTLs in normal and tumor-derived pancreatic tissues reveals functional insights, including for the 9q34.1ABOpancreatic cancer risk locus. , 2017, , .		0