Massimo Vecchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9301066/publications.pdf Version: 2024-02-01

MASSIMO VECCHIO

#	Article	IF	CITATIONS
1	Integrating the IoT and Blockchain Technology for the Next Generation of Mining Inspection Systems. Sensors, 2022, 22, 899.	3.8	17
2	Supporting Intelligence in Disaggregated Open Radio Access Networks: Architectural Principles, AI/ML Workflow, and Use Cases. IEEE Access, 2022, 10, 39580-39595.	4.2	20
3	Characterization and Costs of Integrating Blockchain and IoT for Agri-Food Traceability Systems. Systems, 2022, 10, 57.	2.3	8
4	Tiny-MLOps: a framework for orchestrating ML applications at the far edge of IoT systems. , 2022, , .		8
5	A Blockchain-Based Framework for IoT Data Monetization Services. Computer Journal, 2021, 64, 195-210.	2.4	13
6	Cost-effective IoT devices as trustworthy data sources for a blockchain-based water management system in precision agriculture. Computers and Electronics in Agriculture, 2021, 180, 105889.	7.7	60
7	A Fully Open-Source Approach to Intelligent Edge Computing: AGILE's Lesson. Sensors, 2021, 21, 1309.	3.8	6
8	Envisioning Tool Support for Designing Privacy-Aware Internet of Thing Applications. IEEE Internet of Things Magazine, 2021, 4, 78-83.	2.6	6
9	Explainable Internet Traffic Classification. Applied Sciences (Switzerland), 2021, 11, 4697.	2.5	5
10	Design and Implementation of an Energy-Efficient Weather Station for Wind Data Collection. Sensors, 2021, 21, 3831.	3.8	5
11	MetaNChemo: A meta-heuristic neural-based framework for chemometric analysis. Applied Soft Computing Journal, 2020, 97, 106712.	7.2	3
12	Rationale and Practical Assessment of a Fully Distributed Blockchain-based Marketplace of Fog/Edge Computing Resources. , 2020, , .		3
13	Towards Trusted Data on Decentralized IoT Applications: Integrating Blockchain in Constrained Devices. , 2020, , .		13
14	A Blockchain-Based Approach To Enable Remote Sensing Trusted Data. , 2020, , .		9
15	A Decentralized Peer-to-Peer Remote Health Monitoring System. Sensors, 2020, 20, 1656.	3.8	44
16	Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices. IEEE Internet of Things Journal, 2020, 7, 6882-6897.	8.7	222
17	Energy-neutral weather stations for precision agriculture: challenges and approaches. , 2020, , .		2
18	IRESE: An intelligent rare-event detection system using unsupervised learning on the IoT edge. Engineering Applications of Artificial Intelligence, 2019, 84, 41-50.	8.1	37

MASSIMO VECCHIO

#	Article	IF	CITATIONS
19	Fog Computing Architectures: A Reference for Practitioners. IEEE Internet of Things Magazine, 2019, 2, 19-25.	2.6	14
20	Applications of Blockchains in the Internet of Things: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 1676-1717.	39.4	504
21	An effective Decision Support System for social media listening based on cross-source sentiment analysis models. Engineering Applications of Artificial Intelligence, 2019, 78, 71-85.	8.1	53
22	Enabling a Blockchain-Based IoT Edge. IEEE Internet of Things Magazine, 2018, 1, 24-29.	2.6	15
23	Designing the Sensing as a Service Ecosystem for the Internet of Things. IEEE Internet of Things Magazine, 2018, 1, 18-23.	2.6	8
24	MQTT-Auth: a Token-based Solution to Endow MQTT with Authentication and Authorization Capabilities. Journal of Communications Software and Systems, 2018, 14, .	0.8	17
25	Smart Audio Sensors in the Internet of Things Edge for Anomaly Detection. IEEE Access, 2018, 6, 67594-67610.	4.2	35
26	An Open IoT Platform to Promote Eco-Sustainable Innovation in Western Africa: Real Urban and Rural Testbeds. Wireless Communications and Mobile Computing, 2018, 2018, 1-17.	1.2	16
27	An Integrated Topology Control Framework to Accelerate Consensus in Broadcast Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2018, 17, 7472-7485.	9.2	7
28	Blockchain-based traceability in Agri-Food supply chain management: A practical implementation. , 2018, , .		406
29	A novel approach for internet traffic classification based on multi-objective evolutionary fuzzy classifiers. , 2017, , .		9
30	Educational Big Data Mining: How to Enhance Virtual Learning Environments. Advances in Intelligent Systems and Computing, 2017, , 681-690.	0.6	13
31	The Day After Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-attack Carried Out through an Army of IoT Devices. , 2017, , .		51
32	Learn by Examples How to Link the Internet of Things and the Cloud Computing Paradigms: A Fully Working Proof of Concept. , 2015, , .		2
33	A greedy topology design to accelerate consensus in broadcast wireless sensor networks. Information Processing Letters, 2015, 115, 408-413.	0.6	5
34	Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. Journal of Network and Computer Applications, 2015, 48, 1-13.	9.1	46
35	Improving energy efficiency in IoT with re-configurable virtual objects. , 2014, , .		13
36	Adaptive Lossless Entropy Compressors for Tiny IoT Devices. IEEE Transactions on Wireless Communications, 2014, 13, 1088-1100.	9.2	48

MASSIMO VECCHIO

#	Article	IF	CITATIONS
37	Smart Cities via Data Aggregation. Wireless Personal Communications, 2014, 76, 149-168.	2.7	20
38	On the design of a novel two-objective harmony search approach for distance- and connectivity-based localization in wireless sensor networks. Engineering Applications of Artificial Intelligence, 2013, 26, 669-676.	8.1	20
39	Exploiting Multi–Objective Evolutionary Algorithms for Designing Energy–Efficient Solutions to Data Compression and Node Localization in Wireless Sensor Networks. Studies in Computational Intelligence, 2013, , 227-255.	0.9	2
40	A novel heuristic approach for distance- and connectivity-based multihop node localization in wireless sensor networks. Soft Computing, 2013, 17, 17-28.	3.6	26
41	Reconfiguration of environmental data compression parameters through cognitive IoT technologies. , 2013, , .		3
42	A two-objective evolutionary approach based on topological constraints for node localization in wireless sensor networks. Applied Soft Computing Journal, 2012, 12, 1891-1901.	7.2	54
43	Solving the node localization problem in WSNs by a two-objective evolutionary algorithm and local descent. , 2011, , .		1
44	An Effective Metaheuristic Approach to Node Localization in Wireless Sensor Networks. , 2011, , .		3
45	A study on the application of different two-objective evolutionary algorithms to the node localization problem in wireless sensor networks. , 2011, , .		2
46	On the application of a hybrid Harmony Search algorithm to node localization in anchor-based Wireless Sensor Networks. , 2011, , .		4
47	A two-objective evolutionary approach to design lossy compression algorithms for tiny nodes of wireless sensor networks. Evolutionary Intelligence, 2010, 3, 137-153.	3.6	5
48	A multi-objective evolutionary approach to image quality/compression trade-off in JPEG baseline algorithm. Applied Soft Computing Journal, 2010, 10, 548-561.	7.2	30
49	DEEP: Density-based proactive data dissemination protocol for wireless sensor networks with uncontrolled sink mobility. Computer Communications, 2010, 33, 929-939.	5.1	38
50	Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Information Sciences, 2010, 180, 1924-1941.	6.9	97
51	A k-Layer Self-Organizing Structure for Product Management in Stock-Based Networks. , 2010, , .		1
52	A Multi-objective Evolutionary Approach to Data Compression in Wireless Sensor Networks. , 2009, , .		2
53	An Efficient Lossless Compression Algorithm for Tiny Nodes of Monitoring Wireless Sensor Networks. Computer Journal, 2009, 52, 969-987.	2.4	140
54	A Simple Algorithm for Data Compression in Wireless Sensor Networks. IEEE Communications Letters, 2008, 12, 411-413.	4.1	198

#	Article	IF	CITATIONS
55	Reducing Power Consumption in Wireless Sensor Networks Using a Novel Approach to Data Aggregation. Computer Journal, 2007, 51, 227-239.	2.4	52
56	A Fuzzy Approach to Data Aggregation to Reduce Power Consumption in Wireless Sensor Networks. , 2006, , .		15
57	Enabling Compression in Tiny Wireless Sensor Nodes. , 0, , .		2