Ibrahim Saana Amiinu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9301053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions. ACS Nano, 2022, 16, 8917-8927.	14.6	8
2	Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Liâ€lon Alloying Anodes. Small, 2021, 17, e2005443.	10.0	26
3	Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 247-292.	1.6	1
4	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	14.2	51
5	MoS2/ZIF-8 derived nitrogen doped carbon (NC)-PEDOT: PSS as optically transparent counter electrode for dye-sensitized solar cells. Solar Energy, 2021, 218, 117-128.	6.1	13
6	Dense Silicon Nanowire Networks Grown on a Stainlessâ€Steel Fiber Cloth: A Flexible and Robust Anode for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2105917.	21.0	46
7	A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithiumâ€lon Anodes. Advanced Functional Materials, 2020, 30, 2003278.	14.9	57
8	Evolution of Hierarchically Layered Cu-Rich Silicide Nanoarchitectures. Crystal Growth and Design, 2020, 20, 6677-6682.	3.0	4
9	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	14.9	309
10	Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. IScience, 2020, 23, 101793.	4.1	45
11	Robust MOF-253-derived N-doped carbon confinement of Pt single nanocrystal electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 2020, 41, 839-846.	14.0	41
12	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	27.0	159
13	A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 952-957.	30.8	397
14	Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper. Chemical Communications, 2019, 55, 7780-7783.	4.1	23
15	A universal synthesis strategy for single atom dispersed cobalt/metal clusters heterostructure boosting hydrogen evolution catalysis at all pH values. Nano Energy, 2019, 59, 472-480.	16.0	202
16	ZnO-nitrogen doped carbon derived from a zeolitic imidazolate framework as an efficient counter electrode in dye-sensitized solar cells. Sustainable Energy and Fuels, 2019, 3, 1976-1987.	4.9	16
17	Shrunken hollow Mo-N/Mo-C nanosphere structure for efficient hydrogen evolution in a broad pH range. Electrochimica Acta, 2019, 298, 799-805.	5.2	38
18	Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angewandte Chemie, 2019, 131, 3899-3904.	2.0	40

Ibrahim Saana Amiinu

#	Article	IF	CITATIONS
19	Effects of Intrinsic Pentagon Defects on Electrochemical Reactivity of Carbon Nanomaterials. Angewandte Chemie - International Edition, 2019, 58, 3859-3864.	13.8	253
20	Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahighâ€Performance Supercapacitors. Small, 2018, 14, e1800381.	10.0	55
21	Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc–air batteries. Chemical Engineering Journal, 2018, 342, 163-170.	12.7	91
22	TePtFe Nanotubes as Highâ€Performing Bifunctional Electrocatalysts for the Oxygen Reduction Reaction and Hydrogen Evolution Reaction. ChemSusChem, 2018, 11, 1328-1333.	6.8	22
23	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn–Air Batteries. ACS Nano, 2018, 12, 1894-1901.	14.6	419
24	Co ₂ P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale, 2018, 10, 2902-2907.	5.6	136
25	Surface Evolution of PtCu Alloy Shell over Pd Nanocrystals Leads to Superior Hydrogen Evolution and Oxygen Reduction Reactions. ACS Energy Letters, 2018, 3, 940-945.	17.4	126
26	From 3D ZIF Nanocrystals to Co–N <i>_x</i> /C Nanorod Array Electrocatalysts for ORR, OER, and Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1704638.	14.9	708
27	2D Dualâ€Metal Zeoliticâ€Imidazolateâ€Frameworkâ€(ZIF)â€Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2018, 28, 1705048.	14.9	361
28	Yolk-shell m-SiO2@ Nitrogen doped carbon derived zeolitic imidazolate framework high efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2018, 292, 276-284.	5.2	25
29	Si3N4/MoS2-PEDOT: PSS composite counter electrode for bifacial dye-sensitized solar cells. Solar Energy, 2018, 173, 1135-1143.	6.1	21
30	Zeolitic-imidazolate-framework (ZIF-8)/PEDOT:PSS composite counter electrode for low cost and efficient dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 17303-17310.	2.8	25
31	Scalable cellulose-sponsored functionalized carbon nanorods induced by cobalt for efficient overall water splitting. Carbon, 2018, 137, 274-281.	10.3	50
32	Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale, 2018, 10, 12407-12412.	5.6	89
33	Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. ACS Catalysis, 2018, 8, 7578-7584.	11.2	152
34	Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151.	10.3	19
35	Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42, 11715-11723.	2.8	19
36	Molybdenum Carbide-Derived Chlorine-Doped Ordered Mesoporous Carbon with Few-Layered Graphene Walls for Energy Storage Applications. ACS Applied Materials & Interfaces, 2017, 9, 3702-3712.	8.0	75

#	Article	IF	CITATIONS
37	Smart reconstruction of dual-carbon decorated MnO for anode with high-capacity and ultralong-life lithium storage properties. Carbon, 2017, 115, 95-104.	10.3	115
38	A Generic Conversion Strategy: From 2D Metal Carbides (M <i>_x</i> C <i>_y</i>) to Mâ€Selfâ€Doped Graphene toward Highâ€Efficiency Energy Applications. Advanced Functional Materials, 2017, 27, 1604904.	14.9	67
39	Efficient water splitting catalyzed by flexible NiP ₂ nanosheet array electrodes under both neutral and alkaline solutions. New Journal of Chemistry, 2017, 41, 2154-2159.	2.8	77
40	Phytic acid-derivative transition metal phosphides encapsulated in N,P-codoped carbon: an efficient and durable hydrogen evolution electrocatalyst in a wide pH range. Nanoscale, 2017, 9, 3555-3560.	5.6	201
41	H ₂ O ₂ â€Assisted Synthesis of Porous Nâ€Doped Graphene/Molybdenum Nitride Composites with Boosted Oxygen Reduction Reaction. Advanced Materials Interfaces, 2017, 4, 1601227.	3.7	35
42	Three dimensional few-layer porous carbon nanosheets towards oxygen reduction. Applied Catalysis B: Environmental, 2017, 211, 148-156.	20.2	99
43	General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 16187-16193.	8.0	175
44	Multifunctional Mo–N/C@MoS ₂ Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Advanced Functional Materials, 2017, 27, 1702300.	14.9	658
45	Iron-Doped Nickel Phosphide Nanosheet Arrays: An Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26001-26007.	8.0	200
46	RuP ₂ â€Based Catalysts with Platinumâ€like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pHâ€Values. Angewandte Chemie, 2017, 129, 11717-11722.	2.0	86
47	RuP ₂ â€Based Catalysts with Platinumâ€like Activity and Higher Durability for the Hydrogen Evolution Reaction at All pHâ€Values. Angewandte Chemie - International Edition, 2017, 56, 11559-11564.	13.8	564
48	Na–Mn–O@C yolk–shell nanorods as an ultrahigh electrochemical performance anode for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 18509-18517.	10.3	22
49	Surface Modification of a NiS ₂ Nanoarray with Ni(OH) ₂ toward Superior Water Reduction Electrocatalysis in Alkaline Media. Inorganic Chemistry, 2017, 56, 13651-13654.	4.0	84
50	Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chemical Engineering Journal, 2017, 327, 705-712.	12.7	72
51	Naâ€Mnâ€O Nanocrystals as a High Capacity and Long Life Anode Material for Liâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1602092.	19.5	49
52	Semimetallic MoP ₂ : an active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8, 8500-8504.	5.6	155
53	Mo ₂ C quantum dot embedded chitosan-derived nitrogen-doped carbon for efficient hydrogen evolution in a broad pH range. Chemical Communications, 2016, 52, 12753-12756.	4.1	138
54	Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15327-15332.	10.3	116

#	Article	IF	CITATIONS
55	Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale, 2016, 8, 17256-17261.	5.6	83
56	Inâ€Situ Fabrication of Tungsten Diphosphide Nanoparticles on Tungsten foil: A Hydrogenâ€Evolution Cathode for a Wide pH Range. Energy Technology, 2016, 4, 1030-1034.	3.8	11
57	Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 29408-29418.	8.0	143
58	Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale, 2016, 8, 13311-13320.	5.6	94
59	Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction. Physical Chemistry Chemical Physics, 2016, 18, 10392-10399.	2.8	109
60	Three-Dimensionally Costabilized Metal Catalysts toward an Oxygen Reduction Reaction. Langmuir, 2016, 32, 2236-2244.	3.5	16
61	Toward Anhydrous Proton Conductivity Based on Imidazole Functionalized Mesoporous Silica/Nafion Composite Membranes. Electrochimica Acta, 2015, 160, 185-194.	5.2	54
62	Improved oxygen reduction activity of porous carbon materials by self-doping nitrogen derived from PVP with urea as a promoter. Electrochimica Acta, 2015, 177, 73-78.	5.2	11
63	Lithium storage properties of in situ synthesized Li ₂ FeSiO ₄ and LiFeBO ₃ nanocomposites as advanced cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 23368-23375.	10.3	15
64	Anhydrous Proton Conducting Materials Based on Sulfonated Dimethylphenethylchlorosilane Grafted Mesoporous Silica/Ionic Liquid Composite. ACS Applied Materials & Interfaces, 2013, 5, 11535-11543.	8.0	22