Csaba Koncz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9299216/publications.pdf Version: 2024-02-01

		22153	30087
110	14,397	59	103
papers	citations	h-index	g-index
113	113	113	13541
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular Genetics and Genomics, 1986, 204, 383-396.	2.4	1,656
2	Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis. Cell, 1996, 85, 171-182.	28.9	963
3	Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010, 231, 1237-1249.	3.2	931
4	EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins. Cell, 2003, 115, 679-689.	28.9	681
5	Duplicated <i>P5CS</i> genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal, 2008, 53, 11-28.	5.7	642
6	Differential expression of two P5CS genes controlling proline accumulation during saltâ€stress requires ABA and is regulated by ABA1 , ABI1 and AXR2 in Arabidopsis. Plant Journal, 1997, 12, 557-569.	5.7	364
7	Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature. Plant Physiology, 2008, 148, 1094-1105.	4.8	360
8	Genetic evidence for an essential role of brassinosteroids in plant development. Plant Journal, 1996, 9, 701-713.	5.7	338
9	A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO Journal, 2004, 23, 572-581.	7.8	285
10	Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Molecular Biology, 2003, 51, 363-372.	3.9	251
11	A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genetics, 2006, 38, 63-67.	21.4	251
12	Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50, 587-597.	3.9	229
13	Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant Journal, 1998, 14, 593-602.	5.7	221
14	Functional diversification of closely related ARF-GEFs in protein secretion and recycling. Nature, 2007, 448, 488-492.	27.8	215
15	Brassinosteroids and Plant Steroid Hormone Signaling. Plant Cell, 2002, 14, S97-S110.	6.6	211
16	C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis. Plant Cell, 2006, 18, 3275-3288.	6.6	205
17	Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 2007, 12, 169-176.	8.8	201
18	The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant Journal, 2006, 48, 485-498.	5.7	192

#	Article	IF	CITATIONS
19	Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiology, 2002, 130, 504-513.	4.8	190
20	<i>In vivo</i> studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant Journal, 2005, 41, 412-428.	5.7	189
21	The Heat Shock Factor A4A Confers Salt Tolerance and Is Regulated by Oxidative Stress and the Mitogen-Activated Protein Kinases MPK3 and MPK6 Â Â Â. Plant Physiology, 2014, 165, 319-334.	4.8	186
22	Functional Specialization amongst the Arabidopsis Toc159 Family of Chloroplast Protein Import Receptors[W]. Plant Cell, 2004, 16, 2059-2077.	6.6	184
23	Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of <i>Arabidopsis E2Fa</i> by Lateral Organ Boundary Proteins. Plant Cell, 2011, 23, 3671-3683.	6.6	171
24	The low oxygen, oxidative and osmotic stress responses synergistically act through the ethylene response factor <scp>VII</scp> genes <i><scp>RAP</scp>2.12</i> , <i><scp>RAP</scp>2.2</i> and <i><scp>RAP</scp>2.3</i> . Plant Journal, 2015, 82, 772-784.	5.7	170
25	T-DNA insertional mutagenesis in Arabidopsis. Plant Molecular Biology, 1992, 20, 963-976.	3.9	166
26	A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. Plant Cell, 2002, 14, 2539-2551.	6.6	159
27	Distribution of 1000 sequenced T-DNA tags in theArabidopsisgenome. Plant Journal, 2002, 32, 233-242.	5.7	143
28	Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Reports, 1986, 5, 97-100.	5.6	139
29	Arabidopsis PPR40 Connects Abiotic Stress Responses to Mitochondrial Electron Transport Â. Plant Physiology, 2008, 146, 1721-1737.	4.8	137
30	Intergeneric gene transfer mediated by plant protoplast fusion. Molecular Genetics and Genomics, 1980, 179, 283-288.	2.4	135
31	Digestion of δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryIC. Insect Biochemistry and Molecular Biology, 1996, 26, 365-373.	2.7	132
32	A mutation in the Cap Binding Protein 20 gene confers drought. Plant Molecular Biology, 2004, 55, 679-686.	3.9	130
33	Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant <i>Craterostigma plantagineum</i> . Plant Signaling and Behavior, 2011, 6, 243-250.	2.4	125
34	SWI3 Subunits of Putative SWI/SNF Chromatin-Remodeling Complexes Play Distinct Roles during Arabidopsis Development. Plant Cell, 2005, 17, 2454-2472.	6.6	124
35	Gene identification with sequenced Tâ€DNA tags generated by transformation ofArabidopsiscell suspension. Plant Journal, 1998, 13, 707-716.	5.7	122
36	The plantâ€specific <scp>CDKB</scp> 1― <scp>CYCB</scp> 1 complex mediates homologous recombination repair in <i>Arabidopsis</i> . EMBO Journal, 2016, 35, 2068-2086.	7.8	119

#	Article	IF	CITATIONS
37	Functional Identification of Arabidopsis Stress Regulatory Genes Using the Controlled cDNA Overexpression System Â. Plant Physiology, 2008, 147, 528-542.	4.8	117
38	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	5.7	104
39	Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1–E2F pathway activity. EMBO Journal, 2010, 29, 2979-2993.	7.8	98
40	DELLA-Interacting SWI3C Core Subunit of Switch/Sucrose Nonfermenting Chromatin Remodeling Complex Modulates Gibberellin Responses and Hormonal Cross Talk in Arabidopsis. Plant Physiology, 2013, 163, 305-317.	4.8	98
41	The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk. Trends in Plant Science, 2016, 21, 594-608.	8.8	95
42	PRT6/At5g02310 encodes anArabidopsisubiquitin ligase of the N-end rule pathway with arginine specificity and is not theCER3locus. FEBS Letters, 2007, 581, 3189-3196.	2.8	94
43	The Spliceosome-Activating Complex: Molecular Mechanisms Underlying the Function of a Pleiotropic Regulator. Frontiers in Plant Science, 2012, 3, 9.	3.6	92
44	The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10108-10113.	7.1	91
45	<i>Arabidopsis</i> ULTRAVIOLET-B-INSENSITIVE4 Maintains Cell Division Activity by Temporal Inhibition of the Anaphase-Promoting Complex/Cyclosome Â. Plant Cell, 2011, 23, 4394-4410.	6.6	89
46	The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development Â. Plant Physiology, 2014, 165, 1203-1220.	4.8	89
47	Inactivation of Plasma Membrane–Localized CDPK-RELATED KINASE5 Decelerates PIN2 Exocytosis and Root Gravitropic Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 1592-1608.	6.6	87
48	Rapid identification ofArabidopsisinsertion mutants by non-radioactive detection of T-DNA tagged genes. Plant Journal, 2002, 32, 243-253.	5.7	82
49	Domain fusion between SNF1â€related kinase subunits during plant evolution. EMBO Reports, 2001, 2, 55-60.	4.5	80
50	Functional identification of an Arabidopsis Snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast. Plant Journal, 2000, 23, 115-122.	5.7	78
51	Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant Journal, 1993, 4, 651-658.	5.7	75
52	Intron-tagged epitope: a tool for facile detection and purification of proteins expressed in Agrobacterium-transformed plant cells. Plant Journal, 2000, 22, 553-560.	5.7	75
53	Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends in Plant Science, 2013, 18, 633-643.	8.8	74
54	The use of the luxA gene of the bacterial luciferase operon as a reporter gene. Molecular Genetics and Genomics. 1988, 215, 1-9.	2.4	71

#	Article	IF	CITATIONS
55	NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. Plant Science, 2009, 177, 360-370.	3.6	70
56	CDKF;1 and CDKD Protein Kinases Regulate Phosphorylation of Serine Residues in the C-Terminal Domain of Arabidopsis RNA Polymerase II. Plant Cell, 2012, 24, 1626-1642.	6.6	70
57	The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain <i>MEDEA</i> parental imprinting. EMBO Journal, 2011, 30, 731-743.	7.8	68
58	A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-O and Landsberg erecta. Plant Methods, 2005, 1, 4.	4.3	67
59	Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Science, 2011, 181, 140-150.	3.6	67
60	Centromeric Cohesion Is Protected Twice at Meiosis, by SHUGOSHINs at Anaphase I and by PATRONUS at Interkinesis. Current Biology, 2013, 23, 2090-2099.	3.9	67
61	ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator. Plant Physiology, 2017, 173, 1750-1762.	4.8	67
62	Isolation and characterization of two different cDNAs of delta1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Molecular Biology, 1998, 38, 755-764.	3.9	65
63	Genome-Wide Transcript Profiling of Endosperm without Paternal Contribution Identifies Parent-of-Origin–Dependent Regulation of AGAMOUS-LIKE36. PLoS Genetics, 2011, 7, e1001303.	3.5	65
64	Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signaling and Behavior, 2009, 4, 219-220.	2.4	61
65	BACâ€recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. Plant Journal, 2011, 65, 829-842.	5.7	59
66	Gene Trapping with Firefly Luciferase in Arabidopsis. Tagging of Stress-Responsive Genes. Plant Physiology, 2004, 134, 18-27.	4.8	57
67	Biochemical Characterization of the Restriction-Modification System of Bacillus sphaericus. FEBS Journal, 1978, 89, 523-529.	0.2	55
68	The metabolic sensor AKIN10 modulates the <scp><i>Arabidopsis</i></scp> circadian clock in a lightâ€dependent manner. Plant, Cell and Environment, 2017, 40, 997-1008.	5.7	55
69	Homologous domains of the largest subunit of eucaryotic RNA polymerase II are conserved in plants. Molecular Genetics and Genomics, 1990, 223, 65-75.	2.4	54
70	Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant Journal, 2006, 47, 701-710x.	5.7	54
71	Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Gene, 1989, 81, 335-347.	2.2	52
72	Light exposure of Arabidopsis seedlings causes rapid deâ€stabilization as well as selective postâ€translational inactivation of the repressor of photomorphogenesis SPA2. Plant Journal, 2011, 65, 712-723.	5.7	52

#	Article	IF	CITATIONS
73	Specialized vectors for gene tagging and expression studies. , 1994, , 53-74.		52
74	PLRG1 Is an Essential Regulator of Cell Proliferation and Apoptosis during Vertebrate Development and Tissue Homeostasis. Molecular and Cellular Biology, 2009, 29, 3173-3185.	2.3	49
75	Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgiâ€stack integrity. Plant Journal, 2011, 66, 268-279.	5.7	48
76	Genetic analysis of functional redundancy of BRM ATPase and ATSWI3C subunits of Arabidopsis SWI/SNF chromatin remodelling complexes. Planta, 2009, 229, 1281-1292.	3.2	42
77	SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development. Plant Cell, 2015, 27, 1889-1906.	6.6	42
78	Bacterial and firefly luciferase genes in transgenic plants: Advantages and disadvantages of a reporter gene. Genesis, 1990, 11, 224-232.	2.1	41
79	Control of cell elongation and stress responses by steroid hormones and carbon catabolic repression in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1517-1520.	4.0	41
80	A cop1 spa Mutant Deficient in COP1 and SPA Proteins Reveals Partial Co-Action of COP1 andÂSPA during Arabidopsis Post-Embryonic Development and Photomorphogenesis. Molecular Plant, 2015, 8, 479-481.	8.3	38
81	<scp>PRL</scp> 1 modulates root stem cell niche activity and meristem size through <i><scp>WOX</scp>5</i> and <i><scp>PLT</scp>s</i> in Arabidopsis. Plant Journal, 2015, 81, 399-412.	5.7	37
82	A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaliana protoplasts. Plant Cell Reports, 1995, 14, 221-6.	5.6	33
83	Biochemical and genetic analysis of brassinosteroid metabolism and function in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36, 145-155.	5.8	32
84	Conserved function in Nicotiana tabacum of a single Drosophila hsp70 promoter heat shock element when fused to a minimal T-DNA promoter. Molecular Genetics and Genomics, 1989, 219, 9-16.	2.4	31
85	Homology Recognition During T-DNA Integration into the Plant Genome. , 1994, , 167-189.		28
86	Method for Preparation of Epidermal Imprints Using Agarose. BioTechniques, 1997, 22, 280-282.	1.8	26
87	T-DNA transformation and insertion mutagenesis. , 1992, , 224-273.		25
88	Agrobacterium-mediated transformation of the desiccation-tolerant plant Craterostigma plantagineum. Plant Cell Reports, 1994, 14-14, 102-6.	5.6	23
89	Purification of tobacco nuclear proteins binding to a CACGTG motif of the chalcone synthase promoter by DNA affinity chromatography. FEBS Journal, 1991, 199, 519-527.	0.2	22
90	T-DNA trapping of a cryptic promoter identifies an ortholog of highly conserved SNZ growth arrest response genes in Arabidopsis. Plant Science, 1998, 138, 217-228.	3.6	20

#	Article	IF	CITATIONS
91	Crosstalk between brassinosteroids and pathogenic signalling?. Trends in Plant Science, 1998, 3, 1-2.	8.8	18
92	Cloning of mtDNA fragments homologous to mitochondrial S2 plasmid-like DNA in maize. Molecular Genetics and Genomics, 1981, 183, 449-458.	2.4	16
93	SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. Plant Science, 2018, 270, 278-291.	3.6	15
94	Novel monomeric luciferase enzymes as tools to study plant gene regulationin vivo. Luminescence, 1990, 5, 79-87.	0.0	12
95	Transcriptional control of aspartate kinase expression during darkness and sugar depletion in Arabidopsis: involvement of bZIP transcription factors. Planta, 2011, 233, 1025-1040.	3.2	11
96	The SWI/SNF ATP-Dependent Chromatin Remodeling Complex in Arabidopsis Responds to Environmental Changes in Temperature-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 762.	4.1	11
97	Abiotic stress tolerance. Plant Science, 2012, 182, 1-2.	3.6	10
98	Chromatin Evolution-Key Innovations Underpinning Morphological Complexity. Frontiers in Plant Science, 2019, 10, 454.	3.6	10
99	Genes involved in the control of growth and differentiation in plants. Gene, 1993, 135, 245-249.	2.2	8
100	A Conserved Domain of the Arabidopsis GNOM Protein Mediates Subunit Interaction and Cyclophilin 5 Binding. Plant Cell, 2000, 12, 343.	6.6	8
101	Changing Images of the Gene. Advances in Genetics, 2006, 56, 53-100.	1.8	8
102	Transposon Tn5 mediated gene transfer into plants. Molecular Genetics and Genomics, 1987, 207, 99-105.	2.4	7
103	Gene modification by fastâ€track recombineering for cellular localization and isolation of components of plant protein complexes. Plant Journal, 2019, 100, 411-429.	5.7	5
104	Transgenic Arabidopsis. Stadler Genetics Symposia Series, 1988, , 175-200.	0.0	5
105	Genetic Tools for the Analysis of Gene Expression in Plants. , 1987, , 197-209.		4
106	Double scattered electrons in ion-atom collisions: an impulse approximation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 3879-3887.	1.5	3
107	Identification of T-DNA Insertions in Arabidopsis Genes. , 2003, , .		2
108	The -plasmid and Plant Molecular Biology. , 2000, , 393-409.		1

7

#	Article	IF	CITATIONS
109	George P. Rédei (1921–2008). Cereal Research Communications, 2009, 37, 143-147.	1.6	0
110	Plant Gene Modification by BAC Recombineering. Methods in Molecular Biology, 2022, 2479, 71-84.	0.9	0