
Zhao-Lei Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9298073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Molecular Cancer, 2019, 18, 112.	19.2	515
2	LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Molecular Cancer, 2019, 18, 174.	19.2	315
3	Long non-coding RNA UICLM promotes colorectal cancer liver metastasis by acting as a ceRNA for microRNA-215 to regulate ZEB2 expression. Theranostics, 2017, 7, 4836-4849.	10.0	265
4	Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Science Translational Medicine, 2020, 12, .	12.4	260
5	Long non-coding RNA XIST regulates gastric cancer progression by acting as a molecular sponge of miR-101 to modulate EZH2 expression. Journal of Experimental and Clinical Cancer Research, 2016, 35, 142.	8.6	227
6	CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene, 2018, 37, 6025-6040.	5.9	211
7	Long noncoding RNA XIST expedites metastasis and modulates epithelial–mesenchymal transition in colorectal cancer. Cell Death and Disease, 2017, 8, e3011-e3011.	6.3	170
8	Overexpression of GOLPH3 Promotes Proliferation and Tumorigenicity in Breast Cancer via Suppression of the FOXO1 Transcription Factor. Clinical Cancer Research, 2012, 18, 4059-4069.	7.0	129
9	Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. Journal of the National Cancer Institute, 2019, 111, 584-596.	6.3	125
10	Overexpression of the Circadian Clock Gene <i>Bmal1</i> Increases Sensitivity to Oxaliplatin in Colorectal Cancer. Clinical Cancer Research, 2014, 20, 1042-1052.	7.0	120
11	Liquid biopsies to track trastuzumab resistance in metastatic HER2-positive gastric cancer. Gut, 2019, 68, 1152-1161.	12.1	118
12	Identification of MicroRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology, 2014, 60, 598-609.	7.3	117
13	Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer. Oncotarget, 2015, 6, 21148-21158.	1.8	99
14	Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. Journal of Biochemistry, 2010, 148, 319-326.	1.7	91
15	Increased Expression of EIF5A2, Via Hypoxia or Gene Amplification, Contributes to Metastasis and Angiogenesis of Esophageal Squamous Cell Carcinoma. Gastroenterology, 2014, 146, 1701-1713.e9.	1.3	87
16	ME1 Regulates NADPH Homeostasis to Promote Gastric Cancer Growth and Metastasis. Cancer Research, 2018, 78, 1972-1985.	0.9	86
17	Redox Regulation of Stem-like Cells Though the CD44v-xCT Axis in Colorectal Cancer: Mechanisms and Therapeutic Implications. Theranostics, 2016, 6, 1160-1175.	10.0	75
18	Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Medicine, 2022, 14, 45.	8.2	73

ZHAO-LEI ZENG

#	Article	IF	CITATIONS
19	Targeting the STING pathway in tumor-associated macrophages regulates innate immune sensing of gastric cancer cells. Theranostics, 2020, 10, 498-515.	10.0	68
20	Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Letters, 2018, 412, 243-255.	7.2	65
21	microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget, 2015, 6, 10868-10879.	1.8	64
22	Inhibition of fatty acid catabolism augments the efficacy of oxaliplatin-based chemotherapy in gastrointestinal cancers. Cancer Letters, 2020, 473, 74-89.	7.2	63
23	Genome-wide profiling of Epstein-Barr virus integration by targeted sequencing in Epstein-Barr virus associated malignancies. Theranostics, 2019, 9, 1115-1124.	10.0	56
24	Inhibition of the NF-κB pathway by nafamostat mesilate suppresses colorectal cancer growth and metastasis. Cancer Letters, 2016, 380, 87-97.	7.2	53
25	Melatonin enhances sensitivity to fluorouracil in oesophageal squamous cell carcinoma through inhibition of Erk and Akt pathway. Cell Death and Disease, 2016, 7, e2432-e2432.	6.3	49
26	MYC-Activated LncRNA <i>MNX1-AS1</i> Promotes the Progression of Colorectal Cancer by Stabilizing YB1. Cancer Research, 2021, 81, 2636-2650.	0.9	48
27	Pharmacological Ascorbate Suppresses Growth of Gastric Cancer Cells with GLUT1 Overexpression and Enhances the Efficacy of Oxaliplatin Through Redox Modulation. Theranostics, 2018, 8, 1312-1326.	10.0	46
28	Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. International Journal of Clinical and Experimental Pathology, 2014, 7, 619-30.	0.5	39
29	Hepatitis B virus infection is associated with younger median age at diagnosis and death in cancers. International Journal of Cancer, 2017, 141, 152-159.	5.1	38
30	Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer. World Journal of Gastroenterology, 2014, 20, 18404.	3.3	38
31	VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduction and Targeted Therapy, 2020, 5, 183.	17.1	30
32	EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers. BMC Medicine, 2021, 19, 26.	5.5	27
33	S-1-Based Chemotherapy versus Capecitabine-Based Chemotherapy as First-Line Treatment for Advanced Gastric Carcinoma: A Meta-Analysis. PLoS ONE, 2013, 8, e82798.	2.5	23
34	Correlation between immune signature and highâ€density lipoprotein cholesterol level in stage II/III colorectal cancer. Cancer Medicine, 2019, 8, 1209-1217.	2.8	22
35	The lncRNA XIST/miRâ€125bâ€2â€3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Medicine, 2021, 10, 2423-2441.	2.8	21
36	Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach. Oncotarget, 2015, 6, 3947-3962.	1.8	21

ZHAO-LEI ZENG

#	Article	IF	CITATIONS
37	Comprehensive profiling of 1015 patients' exomes reveals genomic-clinical associations in colorectal cancer. Nature Communications, 2022, 13, 2342.	12.8	21
38	Effect of Raf kinase inhibitor protein expression on malignant biological behavior and progression of colorectal cancer. Oncology Reports, 2015, 34, 2106-2114.	2.6	18
39	Circulating tumor DNA methylation marker MYO1-G for diagnosis and monitoring of colorectal cancer. Clinical Epigenetics, 2021, 13, 232.	4.1	17
40	A two-microRNA-based signature predicts first-line chemotherapy outcomes in advanced colorectal cancer patients. Cell Death Discovery, 2018, 4, 116.	4.7	16
41	The Clinical and Biomarker Association of Programmed Death Ligand 1 and its Spatial Heterogeneous Expression in Colorectal Cancer. Journal of Cancer, 2018, 9, 4325-4333.	2.5	16
42	AMPKα1 confers survival advantage of colorectal cancer cells under metabolic stress by promoting redox balance through the regulation of glutathione reductase phosphorylation. Oncogene, 2020, 39, 637-650.	5.9	16
43	Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 13089-13098.	6.5	15
44	LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Experimental and Molecular Medicine, 2022, 54, 834-847.	7.7	14
45	Arginine methylation of MTHFD1 by PRMT5 enhances anoikis resistance and cancer metastasis. Oncogene, 2022, 41, 3912-3924.	5.9	14
46	Comparison of KRAS mutation status between primary tumor and metastasis in Chinese colorectal cancer patients. Medical Oncology, 2016, 33, 71.	2.5	12
47	Prognostic value of the serum apolipoprotein B to apolipoprotein A-I ratio in metastatic colorectal cancer patients. Journal of Cancer, 2020, 11, 1063-1074.	2.5	12
48	MGMT in colorectal cancer: a promising component of personalized treatment. Tumor Biology, 2016, 37, 11443-11456.	1.8	11
49	Glucose metabolism inhibitor PFK-015 combined with immune checkpoint inhibitor is an effective treatment regimen in cancer. Oncolmmunology, 2022, 11, .	4.6	9
50	Prognostic significance and therapeutic implications of peroxisome proliferator-activated receptor \hat{I}^3 overexpression in human pancreatic carcinoma. International Journal of Oncology, 2015, 46, 175-184.	3.3	8
51	Proteomics study of colorectal cancer and adenomatous polyps identifies TFR1, SAHH, and HV307 as potential biomarkers for screening. Journal of Proteomics, 2021, 243, 104246.	2.4	7
52	Phase II trial of S-1 plus leucovorin in patients with advanced gastric cancer and clinical prediction by S-1 pharmacogenetic pathway. Cancer Chemotherapy and Pharmacology, 2017, 79, 69-79.	2.3	3
53	Establishment of Gastric Cancer Patient-derived Xenograft Models and Primary Cell Lines. Journal of Visualized Experiments, 2019, , .	0.3	3
54	IDDF2019-ABS-0316â€Long non-coding RNA CRCAL-2 promotes gastric cancer metastasis by activating wnt/beta-catenin pathway via stabilizing the nuclear transport protein RAN. , 2019, , .		1

#	Article	IF	CITATIONS
55	Performance of common genetic variants in risk prediction for colorectal cancer in Chinese: A two-stage and multicenter study. Genomics, 2021, 113, 867-873.	2.9	1
56	IDDF2020-ABS-0177â€ERBB4 high expression and mutations in gastric cancer present opportunities for clinical landscape and therapeutic development. , 2020, , .		1
57	IDDF2019-ABS-0246â€LncRNA XIST regulated chemotherapeutic sensitivity of mir-125b-2–3p by targeting wee1 in colorectal cancer. , 2019, , .		0
58	IDDF2020-ABS-0179â€Cholesterol-Rorα/Γ axis promotes colorectal cancer progression through c-myc stabilization. , 2020, , .		0