Ding Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297555/publications.pdf Version: 2024-02-01

DINC PENO

#	Article	IF	CITATIONS
1	Intelligent Fault Diagnosis of Gearbox Under Variable Working Conditions With Adaptive Intraclass and Interclass Convolutional Neural Network. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6339-6353.	11.3	45
2	Multiscale Deep Graph Convolutional Networks for Intelligent Fault Diagnosis of Rotor-Bearing System Under Fluctuating Working Conditions. IEEE Transactions on Industrial Informatics, 2023, 19, 166-176.	11.3	32
3	Mechatronics Equipment Performance Degradation Assessment Using Limited and Unlabeled Data. IEEE Transactions on Industrial Informatics, 2022, 18, 2374-2385.	11.3	15
4	Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings. Reliability Engineering and System Safety, 2022, 218, 108126.	8.9	76
5	An Optimal Indirect In-Motion Coarse Alignment Method for GNSS-Aided SINS. IEEE Sensors Journal, 2022, 22, 7608-7618.	4.7	3
6	Transfer Learning for Remaining Useful Life Prediction Across Operating Conditions Based on Multisource Domain Adaptation. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4143-4152.	5.8	24
7	Multiobjective Evolution Enhanced Collaborative Health Monitoring and Prognostics: A Case Study of Bearing Life Test With Three-Axis Acceleration Signals. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	3
8	Deep imbalanced regression using cost-sensitive learning and deep feature transfer for bearing remaining useful life estimation. Applied Soft Computing Journal, 2022, 127, 109271.	7.2	16
9	Intelligent machinery health prognostics under variable operation conditions with limited and variable-length data. Advanced Engineering Informatics, 2022, 53, 101691.	8.0	6
10	A dynamic structure-adaptive symbolic approach for slewing bearings' life prediction under variable working conditions. Structural Health Monitoring, 2021, 20, 273-302.	7.5	19
11	Stationary subspaces-vector autoregressive with exogenous terms methodology for degradation trend estimation of rolling and slewing bearings. Mechanical Systems and Signal Processing, 2021, 150, 107293.	8.0	28
12	A High-Order Enhanced Attitude Algorithm Under Angular-Rate Input Condition. IEEE Sensors Journal, 2021, 21, 12119-12129.	4.7	2
13	Statistical Alignment-Based Metagated Recurrent Unit for Cross-Domain Machinery Degradation Trend Prognostics Using Limited Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	3
14	A Novel Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Transfer Auto-Encoder. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	14
15	Measuring Density Functional Parameters from Electron Diffraction Patterns. Physical Review Letters, 2021, 126, 176402.	7.8	2
16	Meta deep learning based rotating machinery health prognostics toward few-shot prognostics. Applied Soft Computing Journal, 2021, 104, 107211.	7.2	41
17	Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network. Measurement: Journal of the International Measurement Confederation, 2021, 178, 109287.	5.0	93
18	Bioinspired actuators with intrinsic muscle-like mechanical properties. IScience, 2021, 24, 103023.	4.1	3

Ding Peng

#	Article	IF	CITATIONS
19	Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors. Reliability Engineering and System Safety, 2021, 216, 107946.	8.9	34
20	A New Compressed-Structure-Based Coning Algorithm for Fiber Optic Strapdown Inertial Navigation Systems. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-14.	4.7	4
21	Remaining Useful Life Estimation Under Variable Failure Behaviors via Transferable Metric Learning. , 2021, , .		0
22	Life prediction of slewing bearing based on isometric mapping and fuzzy support vector regression. Transactions of the Institute of Measurement and Control, 2020, 42, 94-103.	1.7	7
23	Remaining Useful Life Assessment of Slewing Bearing Based on Spatial-Temporal Sequence. IEEE Access, 2020, 8, 9739-9750.	4.2	6
24	Fault Diagnosis of Rolling-Element Bearing Using Multiscale Pattern Gradient Spectrum Entropy Coupled with Laplacian Score. Complexity, 2020, 2020, 1-29.	1.6	16
25	Intelligent Fault Diagnosis of Multichannel Motor–Rotor System Based on Multimanifold Deep Extreme Learning Machine. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2177-2187.	5.8	61
26	Intelligent health evaluation of rolling bearings based on subspace meta-learning. , 2020, , .		0
27	Degradation evaluation of slewing bearing using HMM and improved GRU. Measurement: Journal of the International Measurement Confederation, 2019, 146, 385-395.	5.0	57
28	RstA, a two-component response regulator, plays important roles in multiple virulence-associated processes in enterohemorrhagic Escherichia coli O157:H7. Gut Pathogens, 2019, 11, 53.	3.4	15
29	A Symbolic Regression Based Residual Useful Life Model for Slewing Bearings. IEEE Access, 2019, 7, 72076-72089.	4.2	7
30	HYGP-MSAM based model for slewing bearing residual useful life prediction. Measurement: Journal of the International Measurement Confederation, 2019, 141, 162-175.	5.0	20
31	A Clustering-Based Framework for Performance Degradation Prediction of Slewing Bearing Using Multiple Physical Signals. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2019, 5, .	1.1	4
32	Identification of the impurity phase in high-purity CeB6 by convergent-beam electron diffraction. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 489-500.	0.1	1
33	Formation of organogels with aggregation-induced emission characteristics triggered by thermal and ultrasound. Colloid and Polymer Science, 2017, 295, 1765-1772.	2.1	6
34	How do specimen preparation and crystal perfection affect structure factor measurements by quantitative convergent-beam electron diffraction?. Journal of Applied Crystallography, 2017, 50, 602-611.	4.5	8
35	Whole-genome sequencing reveals the effect of vaccination on the evolution of Bordetella pertussis. Scientific Reports, 2015, 5, 12888.	3.3	44
36	Reliability-based residual life prediction of large-size low-speed slewing bearings. Mechanism and Machine Theory, 2014, 81, 94-106.	4.5	21

#	Article	IF	CITATIONS
37	Smart health evaluation of slewing bearing based on multiple-characteristic parameters. Journal of Mechanical Science and Technology, 2014, 28, 2089-2097.	1.5	6
38	Effect of raceway geometry parameters on the carrying capability and the service life of a four-point-contact slewing bearing. Journal of Mechanical Science and Technology, 2010, 24, 2083-2089.	1.5	21