
Gary A Piazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. Journal of Experimental and Clinical Cancer Research, 2022, 41, 27.	8.6	73
2	Pan-RAS inhibitors: Hitting multiple RAS isozymes with one stone. Advances in Cancer Research, 2022, 153, 131-168.	5.0	4
3	A Novel Sulindac Derivative Protects against Oxidative Damage by a Cyclooxygenase-Independent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2022, 382, 79-87.	2.5	0
4	From Celecoxib to a Novel Class of Phosphodiesterase 5 Inhibitors: Trisubstituted Pyrazolines as Novel Phosphodiesterase 5 Inhibitors with Extremely High Potency and Phosphodiesterase Isozyme Selectivity. Journal of Medicinal Chemistry, 2021, 64, 4462-4477.	6.4	11
5	Suppression of Colon Tumorigenesis in Mutant <i>Apc</i> Mice by a Novel PDE10 Inhibitor that Reduces Oncogenic β-Catenin. Cancer Prevention Research, 2021, 14, 995-1008.	1.5	8
6	Novel thiazolidine derivatives as potent selective pro-apoptotic agents. Bioorganic Chemistry, 2021, 114, 105143.	4.1	4
7	Identification and Characterization of Key Differentially Expressed Genes Associated With Metronomic Dosing of Topotecan in Human Prostate Cancer. Frontiers in Pharmacology, 2021, 12, 736951.	3.5	8
8	Exploiting RAS Nucleotide Cycling as a Strategy for Drugging RAS-Driven Cancers. International Journal of Molecular Sciences, 2020, 21, 141.	4.1	15
9	Inhibition of the Lysophosphatidylinositol Transporter ABCC1 Reduces Prostate Cancer Cell Growth and Sensitizes to Chemotherapy. Cancers, 2020, 12, 2022.	3.7	13
10	Persistent STAT5 activation reprograms the epigenetic landscape in CD4 ⁺ T cells to drive polyfunctionality and antitumor immunity. Science Immunology, 2020, 5, .	11.9	40
11	Enhancing anticancer activity of checkpoint immunotherapy by targeting RAS. MedComm, 2020, 1, 121-128.	7.2	16
12	Discovery of trisubstituted pyrazolines as a novel scaffold for the development of selective phosphodiesterase 5 inhibitors. Bioorganic Chemistry, 2020, 104, 104322.	4.1	6
13	Extending the use of tadalafil scaffold: Development of novel selective phosphodiesterase 5 inhibitors and histone deacetylase inhibitors. Bioorganic Chemistry, 2020, 98, 103742.	4.1	14
14	Targeting cGMP/PKG signaling for the treatment or prevention of colorectal cancer with novel sulindac derivatives lacking cyclooxygenase inhibitory activity. Oncology Signaling, 2020, 3, 1-6.	0.2	5
15	PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discovery Today, 2020, 25, 1521-1527.	6.4	39
16	<p>New Isatin–Indole Conjugates: Synthesis, Characterization, and a Plausible Mechanism of Their in vitro Antiproliferative Activity</p> . Drug Design, Development and Therapy, 2020, Volume 14, 483-495.	4.3	23
17	Pharmacological inhibition of ABCC3 slows tumour progression in animal models of pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 312.	8.6	18
18	Design and synthesis of 1,2,4â€ŧriazolo[1,5â€a]pyrimidine derivatives as PDE 4B inhibitors endowed with bronchodilator activity. Archiv Der Pharmazie, 2019, 352, 1900002.	4.1	8

#	Article	IF	CITATIONS
19	<p>Antiproliferative activity and possible mechanism of action of certain 5-methoxyindole tethered C-5 functionalized isatins</p> . Drug Design, Development and Therapy, 2019, Volume 13, 3069-3078.	4.3	3
20	Synthesis and biological evaluation of certain hydrazonoindolin-2-one derivatives as new potent anti-proliferative agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 867-878.	5.2	47
21	The interaction between the Wnt/ \hat{l}^2 -catenin signaling cascade and PKG activation in cancer. Journal of Biomedical Research, 2017, 31, 189.	1.6	20
22	The RAS–Effector Interaction as a Drug Target. Cancer Research, 2017, 77, 221-226.	0.9	62
23	Validation of PDE5 as a Chemoprevention Target. Cancer Prevention Research, 2017, 10, 373-376.	1.5	11
24	Isatin-benzoazine molecular hybrids as potential antiproliferative agents: synthesis and in vitro pharmacological profiling. Drug Design, Development and Therapy, 2017, Volume 11, 2333-2346.	4.3	50
25	New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS ONE, 2017, 12, e0181241.	2.5	29
26	Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae. Aging, 2017, 9, 68-97.	3.1	10
27	Phosphodiesterase 10A is overexpressed in lung tumor cells and inhibitors selectively suppress growth by blocking β-catenin and MAPK signaling. Oncotarget, 2017, 8, 69264-69280.	1.8	27
28	Structure-Based Design of Novel Tetrahydro-Beta-Carboline Derivatives with a Hydrophilic Side Chain as Potential Phosphodiesterase Inhibitors. Scientia Pharmaceutica, 2016, 84, 428-446.	2.0	6
29	Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1α. Cancer Research, 2016, 76, 2231-2242.	0.9	107
30	Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells. Food and Function, 2016, 7, 4012-4019.	4.6	25
31	Design and Synthesis of Substituted Pyridazinoneâ€lâ€Acetylhydrazones as Novel Phosphodiesterase 4 Inhibitors. Archiv Der Pharmazie, 2016, 349, 104-111.	4.1	8
32	Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. PLoS ONE, 2016, 11, e0163615.	2.5	23
33	β-catenin nuclear translocation in colorectal cancer cells is suppressed by PDE10A inhibition, cGMP elevation, and activation of PKG. Oncotarget, 2016, 7, 5353-5365.	1.8	55
34	Inhibition of breast cancer cell motility with a non-cyclooxygenase inhibitory derivative of sulindac by suppressing TGFβ/miR-21 signaling. Oncotarget, 2016, 7, 7979-7992.	1.8	12
35	Mining ZINC Database to Discover Potential Phosphodiesterase 9 Inhibitors Using Structure-Based Drug Design Approach. Medicinal Chemistry, 2016, 12, 472-477.	1.5	5
36	Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion. Journal of Biomedical Research, 2016, 30, 120-133.	1.6	13

#	Article	lF	CITATIONS
37	Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation. Oncotarget, 2015, 6, 5237-5252.	1.8	39
38	Mechanistic Role of MicroRNA in Cancer Chemoprevention by Nonsteroidal Anti-inflammatory Drugs. Current Pharmacology Reports, 2015, 1, 154-160.	3.0	4
39	Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. American Journal of Physiology - Renal Physiology, 2015, 309, G59-G70.	3.4	55
40	Phosphodiesterase 10A: a novel target for selective inhibition of colon tumor cell growth and β-catenin-dependent TCF transcriptional activity. Oncogene, 2015, 34, 1499-1509.	5.9	54
41	Autocrine fibroblast growth factor 18 signaling mediates Wnt-dependent stimulation of CD44-positive human colorectal adenoma cells. Molecular Carcinogenesis, 2015, 54, 789-799.	2.7	18
42	Suppression of \hat{l}^2 -catenin/TCF transcriptional activity and colon tumor cell growth by dual inhibition of PDE5 and 10. Oncotarget, 2015, 6, 27403-27415.	1.8	39
43	Panepoxydone Targets NF-kB and FOXM1 to Inhibit Proliferation, Induce Apoptosis and Reverse Epithelial to Mesenchymal Transition in Breast Cancer. PLoS ONE, 2014, 9, e98370.	2.5	70
44	The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers, 2014, 6, 436-458.	3.7	198
45	NSAIDs Inhibit Tumorigenesis, but How?. Clinical Cancer Research, 2014, 20, 1104-1113.	7.0	188
46	Novel non-cyclooxygenase inhibitory derivatives of naproxen for colorectal cancer chemoprevention. Medicinal Chemistry Research, 2014, 23, 4177-4188.	2.4	18
47	Novel Quinazolinâ€4(3 <i>H</i>)â€one/Schiff Base Hybrids as Antiproliferative and Phosphodiesterase 4 Inhibitors: Design, Synthesis, and Docking Studies. Archiv Der Pharmazie, 2014, 347, 650-657.	4.1	14
48	6â€Aryl and Heterocycle Quinazoline Derivatives as Potent EGFR Inhibitors with Improved Activity toward Gefitinib‣ensitive and â€Resistant Tumor Cell Lines. ChemMedChem, 2013, 8, 1495-1504.	3.2	16
49	Quinazoline and tetrahydropyridothieno[2,3-d]pyrimidine derivatives as irreversible EGFR tyrosine kinase inhibitors: influence of the position 4 substituent. MedChemComm, 2013, 4, 1202.	3.4	16
50	Synthesis of some dihydropyrimidine-based compounds bearing pyrazoline moiety and evaluation of their antiproliferative activity. European Journal of Medicinal Chemistry, 2013, 70, 273-279.	5.5	43
51	Trisubstituted and tetrasubstituted pyrazolines as a novel class of cell-growth inhibitors in tumor cells with wild type p53. Bioorganic and Medicinal Chemistry, 2013, 21, 7343-7356.	3.0	4
52	Sulindac sulfide inhibits sarcoendoplasmic reticulum Ca ²⁺ ATPase, induces endoplasmic reticulum stress response, and exerts toxicity in glioma cells: Relevant similarities to and important differences from celecoxib. Journal of Neuroscience Research, 2013, 91, 393-406.	2.9	19
53	Design of Novel βâ€Carboline Derivatives with Pendant 5â€Bromothienyl and Their Evaluation as Phosphodiesteraseâ€5 Inhibitors. Archiv Der Pharmazie, 2013, 346, 23-33.	4.1	14
54	Synthesis and inÂvitro antiproliferative effect of novel quinoline-based potential anticancer agents. European Journal of Medicinal Chemistry, 2013, 63, 826-832.	5.5	61

#	Article	IF	CITATIONS
55	MicroRNA and Cancer Chemoprevention. Cancer Prevention Research, 2013, 6, 401-409.	1.5	34
56	MicroRNAs are involved in the self-renewal and differentiation of cancer stem cells. Acta Pharmacologica Sinica, 2013, 34, 1374-1380.	6.1	22
57	An Undesired Effect of Chemotherapy. Journal of Biological Chemistry, 2013, 288, 21197-21207.	3.4	145
58	New NSAID Targets and Derivatives for Colorectal Cancer Chemoprevention. Recent Results in Cancer Research, 2013, 191, 105-120.	1.8	27
59	Sulindac Selectively Inhibits Colon Tumor Cell Growth by Activating the cGMP/PKG Pathway to Suppress Wnt/β-Catenin Signaling. Molecular Cancer Therapeutics, 2013, 12, 1848-1859.	4.1	113
60	COX-Independent Mechanisms of Cancer Chemoprevention by Anti-Inflammatory Drugs. Frontiers in Oncology, 2013, 3, 181.	2.8	101
61	Hypoxia-regulated microRNAs in human cancer. Acta Pharmacologica Sinica, 2013, 34, 336-341.	6.1	128
62	A Novel Sulindac Derivative Inhibits Lung Adenocarcinoma Cell Growth through Suppression of Akt/mTOR Signaling and Induction of Autophagy. Molecular Cancer Therapeutics, 2013, 12, 663-674.	4.1	35
63	Honokiol: A Novel Natural Agent for Cancer Prevention and Therapy. Current Molecular Medicine, 2012, 12, 1244-1252.	1.3	192
64	MiR-181 mediates cell differentiation by interrupting the Lin28 and let-7 feedback circuit. Cell Death and Differentiation, 2012, 19, 378-386.	11.2	117
65	CoMFA and CoMSIA Studies of 1,2-dihydropyridine Derivatives as Anticancer Agents. Medicinal Chemistry, 2012, 8, 372-383.	1.5	10
66	Sulindac inhibits tumor cell invasion by suppressing NF-ήB-mediated transcription of microRNAs. Oncogene, 2012, 31, 4979-4986.	5.9	68
67	Exploring the PDE5 H-pocket by ensemble docking and structure-based design and synthesis of novel β-carboline derivatives. European Journal of Medicinal Chemistry, 2012, 57, 329-343.	5.5	19
68	Aquaporins mediate the chemoresistance of human melanoma cells to arsenite. Molecular Oncology, 2012, 6, 81-87.	4.6	37
69	Novel Therapeutics: NSAIDs, Derivatives, and Phosphodiesterases. Current Colorectal Cancer Reports, 2012, 8, 325-330.	0.5	9
70	A Novel Sulindac Derivative that Potently Suppresses Colon Tumor Cell Growth by Inhibiting cGMP Phosphodiesterase and β-Catenin Transcriptional Activity. Cancer Prevention Research, 2012, 5, 822-833.	1.5	83
71	Four-Component Synthesis of 1,2-Dihydropyridine Derivatives and their Evaluation as Anticancer Agents. Medicinal Chemistry, 2012, 8, 392-400.	1.5	20
72	Synthesis and Molecular Modeling of Novel Tetrahydro-β-carboline Derivatives with Phosphodiesterase 5 Inhibitory and Anticancer Properties. Journal of Medicinal Chemistry, 2011, 54, 495-509.	6.4	43

#	Article	IF	CITATIONS
73	Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/β-Catenin Pathway. PLoS ONE, 2011, 6, e29290.	2.5	187
74	Design, Synthesis and Structure–Activity Relationship of Functionalized Tetrahydroâ€ β arboline Derivatives as Novel PDE5 Inhibitors. Archiv Der Pharmazie, 2011, 344, 149-157.	4.1	24
75	Inhibition of PDE5 by Sulindac Sulfide Selectively Induces Apoptosis and Attenuates Oncogenic Wnt/β-Catenin–Mediated Transcription in Human Breast Tumor Cells. Cancer Prevention Research, 2011, 4, 1275-1284.	1.5	87
76	A High-Throughput Screen with Isogenic PTEN+/+ and PTENâ^'/â^' Cells Identifies CID1340132 as a Novel Compound That Induces Apoptosis in PTEN and PIK3CA Mutant Human Cancer Cells. Journal of Biomolecular Screening, 2011, 16, 383-393.	2.6	9
77	Synthesis, Molecular Modeling, and Biological Evaluation of Novel Tetrahydro- <i>β</i> -Carboline Hydantoin and Tetrahydro- <i>I²</i> -Carboline Thiohydantoin Derivatives as Phosphodiesterase 5 Inhibitors. International Journal of Medicinal Chemistry, 2011, 2011, 1-9.	2.2	2
78	A Novel Access to Arylated and Heteroarylated Beta-Carboline Based PDE5 Inhibitors. Medicinal Chemistry, 2010, 6, 374-387.	1.5	5
79	Pharmacokinetics and pharmacodynamics of Phor21-βCG(ala), a lytic peptide conjugateâ€. Journal of Pharmacy and Pharmacology, 2010, 60, 1441-1448.	2.4	10
80	A Highâ€Throughput Screen for Chemical Inhibitors of Exocytic Transport in Yeast. ChemBioChem, 2010, 11, 1291-1301.	2.6	7
81	Discovery of colon tumor cell growth inhibitory agents through a combinatorial approach. European Journal of Medicinal Chemistry, 2010, 45, 90-97.	5.5	60
82	Synthesis, molecular modeling and biological evaluation of novel tadalafil analogues as phosphodiesterase 5 and colon tumor cell growth inhibitors, new stereochemical perspective. European Journal of Medicinal Chemistry, 2010, 45, 1278-1286.	5.5	36
83	NSAIDs: Old Drugs Reveal New Anticancer Targets. Pharmaceuticals, 2010, 3, 1652-1667.	3.8	48
84	Colon Tumor Cell Growth–Inhibitory Activity of Sulindac Sulfide and Other Nonsteroidal Anti-Inflammatory Drugs Is Associated with Phosphodiesterase 5 Inhibition. Cancer Prevention Research, 2010, 3, 1303-1313.	1.5	72
85	A Novel Sulindac Derivative Lacking Cyclooxygenase-Inhibitory Activities Suppresses Carcinogenesis in the Transgenic Adenocarcinoma of Mouse Prostate Model. Cancer Prevention Research, 2010, 3, 885-895.	1.5	12
86	Synthesis of Novel Tadalafil Analogues and their Evaluation as Phosphodiesterase Inhibitors and Anticancer Agents. Arzneimittelforschung, 2009, 59, 415-421.	0.4	8
87	A Novel Sulindac Derivative That Does Not Inhibit Cyclooxygenases but Potently Inhibits Colon Tumor Cell Growth and Induces Apoptosis with Antitumor Activity. Cancer Prevention Research, 2009, 2, 572-580.	1.5	78
88	Suppression of Wnt/β-catenin signaling inhibits prostate cancer cell proliferation. European Journal of Pharmacology, 2009, 602, 8-14.	3.5	99
89	Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 5974-5982.	3.0	81
90	Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Molecular Cancer Therapeutics, 2009, 8, 3331-3340.	4.1	92

#	Article	IF	CITATIONS
91	First International Conference on Chemoprevention of Prostate Cancer. Journal of Urology, 2004, 171, S3-4.	0.4	2
92	Nonsteroidal Anti-inflammatory Drugs and Cyclooxygenase-2 Selective Inhibitors for Prostate Cancer Chemoprevention. Journal of Urology, 2004, 171, S59-62; discussion S62-3.	0.4	75
93	Exisulind and CP248 induce growth inhibition and apoptosis in human esophageal adenocarcinoma and squamous carcinoma cells. Journal of Experimental Therapeutics and Oncology, 2003, 3, 83-94.	0.5	14
94	Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Molecular Cancer Therapeutics, 2003, 2, 479-88.	4.1	77
95	Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells. Molecular Cancer Therapeutics, 2003, 2, 885-92.	4.1	86
96	Exisulind and related compounds inhibit expression and function of the androgen receptor in human prostate cancer cells. Clinical Cancer Research, 2003, 9, 4972-82.	7.0	24
97	Preclinical and clinical studies of docetaxel and exisulind in the treatment of human lung cancer. Seminars in Oncology, 2002, 29, 87-94.	2.2	51
98	Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors. Clinical Cancer Research, 2002, 8, 904-12.	7.0	53
99	Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochemical Pharmacology, 1999, 58, 1097-1107.	4.4	182
100	Exisulind (sulindac sulfone) suppresses growth of human prostate cancer in a nude mouse xenograft model by increasing apoptosis. Urology, 1999, 53, 440-445.	1.0	116
101	Effects of sulindac and its metabolites on growth and apoptosis in human mammary epithelial and breast carcinoma cell lines. Breast Cancer Research and Treatment, 1998, 48, 195-203.	2.5	71
102	Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung tumor formation by FGN-1 (sulindac sulfone). Carcinogenesis, 1998, 19, 1353-1356.	2.8	41
103	Lysophosphatidic Acid Induction of Transforming Growth Factors α and β: Modulation of Proliferation and Differentiation in Cultured Human Keratinocytes and Mouse Skin. Experimental Cell Research, 1995, 216, 51-64.	2.6	90
104	Expression of enzymically active rat dipeptidyl peptidase IV in Chinese hamster ovary cells after transfection. Biochemistry, 1989, 28, 8474-8479.	2.5	23
105	[62] Calmodulin and actin polymerization. Methods in Enzymology, 1987, 139, 846-857.	1.0	0