
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radical Biology and Medicine, 2022, 188, 92-102.	2.9	10
2	Cardiolipin deficiency in Barth syndrome is not associated with increasedÂsuperoxide/H 2 O 2 production in heart and skeletal muscle mitochondria. FEBS Letters, 2021, 595, 415-432.	2.8	14
3	Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radical Biology and Medicine, 2021, 164, 223-232.	2.9	14
4	S3QELs protect against dietâ€induced intestinal barrier dysfunction. Aging Cell, 2021, 20, e13476.	6.7	9
5	Controlled power: how biology manages succinate-driven energy release. Biochemical Society Transactions, 2021, 49, 2929-2939.	3.4	10
6	The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biology, 2020, 28, 101341.	9.0	44
7	Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site IQ of complex I in diverse cell lines. Redox Biology, 2020, 37, 101722.	9.0	26
8	Riding the tiger – physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 592-661.	5.2	56
9	S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site IQ without inhibiting reverse electron flow through Complex I. Free Radical Biology and Medicine, 2019, 143, 545-559.	2.9	30
10	The Whys and Hows of Calculating Total Cellular ATP Production Rate. Trends in Endocrinology and Metabolism, 2019, 30, 412-416.	7.1	6
11	Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radical Biology and Medicine, 2019, 130, 140-150.	2.9	75
12	Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochemical Society Transactions, 2019, 47, 1461-1469.	3.4	21
13	Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. Journal of Bone and Mineral Research, 2018, 33, 1052-1065.	2.8	71
14	Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biological Chemistry, 2018, 399, 407-420.	2.5	21
15	Measurement of Proton Leak in Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 157-170.	0.9	8
16	Plate-Based Measurement of Superoxide and Hydrogen Peroxide Production by Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 287-299.	0.9	4
17	Plate-Based Measurement of Respiration by Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 301-313.	0.9	5
18	Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Journal of Biological Chemistry, 2017, 292, 7189-7207.	3.4	343

#	Article	IF	CITATIONS
19	Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. Journal of Biological Chemistry, 2017, 292, 16804-16809.	3.4	336
20	Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1054-1065.	3.8	15
21	Tunicamycin Exposure Triggers Apopotosis by Superoxide Formation from Site III Qo of Mitochondrial Complex III. Free Radical Biology and Medicine, 2017, 112, 172.	2.9	1
22	Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle. Frontiers in Physiology, 2017, 8, 704.	2.8	21
23	Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine, 2016, 100, 14-31.	2.9	753
24	Stable nuclear expression of <i>ATP8</i> and <i>ATP6</i> genes rescues a mtDNA Complex V <i>null</i> mutant. Nucleic Acids Research, 2016, 44, gkw756.	14.5	35
25	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	16.2	162
26	Exploiting Mitochondria InÂVivo as Chemical Reaction Chambers Dependent on Membrane Potential. Molecular Cell, 2016, 61, 642-643.	9.7	9
27	Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radical Biology and Medicine, 2016, 91, 247-255.	2.9	56
28	Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements. PLoS ONE, 2016, 11, e0152016.	2.5	121
29	Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells. PLoS ONE, 2016, 11, e0159199.	2.5	24
30	Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate. Journal of Visualized Experiments, 2015, , e53464.	0.3	66
31	Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake. Cell Reports, 2015, 10, 505-515.	6.4	67
32	The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. Journal of Biological Chemistry, 2015, 290, 22325-22336.	3.4	219
33	Suppressors of superoxide production from mitochondrial complex III. Nature Chemical Biology, 2015, 11, 834-836.	8.0	157
34	Sites of Superoxide and Hydrogen Peroxide Production by Muscle Mitochondria Assessed ex Vivo under Conditions Mimicking Rest and Exercise. Journal of Biological Chemistry, 2015, 290, 209-227.	3.4	261
35	The contributions of respiration and glycolysis to extracellular acid production. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 171-181.	1.0	264
36	Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. Journal of Bioenergetics and Biomembranes, 2015, 47, 63-74.	2.3	31

#	Article	lF	CITATIONS
37	Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells. Oncotarget, 2015, 6, 40036-40052.	1.8	22
38	Novel Inhibitors of Mitochondrial sn-Glycerol 3-phosphate Dehydrogenase. PLoS ONE, 2014, 9, e89938.	2.5	46
39	Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biology, 2014, 2, 901-909.	9.0	62
40	The 2-Oxoacid Dehydrogenase Complexes in Mitochondria Can Produce Superoxide/Hydrogen Peroxide at Much Higher Rates Than Complex I. Journal of Biological Chemistry, 2014, 289, 8312-8325.	3.4	257
41	Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2014, 72, 149-155.	2.9	64
42	Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2013, 61, 298-309.	2.9	103
43	The Determination and Analysis of Site-Specific Rates of Mitochondrial Reactive Oxygen Species Production. Methods in Enzymology, 2013, 526, 189-217.	1.0	76
44	Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radical Biology and Medicine, 2013, 65, 1047-1059.	2.9	65
45	The role of mitochondrial function and cellular bioenergetics in ageing and disease. British Journal of Dermatology, 2013, 169, 1-8.	1.5	154
46	Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology, 2013, 1, 304-312.	9.0	476
47	A Prototypical Smallâ€Molecule Modulator Uncouples Mitochondria in Response to Endogenous Hydrogen Peroxide Production. ChemBioChem, 2013, 14, 993-1000.	2.6	23
48	Measuring Mitochondrial Uncoupling Protein-2 Level and Activity in Insulinoma Cells. Methods in Enzymology, 2013, 528, 257-267.	1.0	3
49	Metabolic Downregulation and Inhibition of Carbohydrate Catabolism during Diapause in Embryos of <i>Artemia franciscana</i> . Physiological and Biochemical Zoology, 2013, 86, 106-118.	1.5	29
50	A Refined Analysis of Superoxide Production by Mitochondrial sn-Glycerol 3-Phosphate Dehydrogenase. Journal of Biological Chemistry, 2012, 287, 42921-42935.	3.4	144
51	Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1). Journal of Biological Chemistry, 2012, 287, 36845-36853.	3.4	47
52	Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions. Journal of Biological Chemistry, 2012, 287, 27255-27264.	3.4	540
53	Plasma Membrane Potential Oscillations in Insulin Secreting Ins-1 832/13 Cells Do Not Require Glycolysis and Are Not Initiated by Fluctuations in Mitochondrial Bioenergetics. Journal of Biological Chemistry, 2012, 287, 15706-15717.	3.4	35
54	Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radical Biology and Medicine, 2012, 53, 1807-1817.	2.9	133

#	Article	IF	CITATIONS
55	No Consistent Bioenergetic Defects in Presynaptic Nerve Terminals Isolated from Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 16775-16784.	3.6	27
56	Native Rates of Mitochondrial Superoxide Production: A Novel Method Utilizing Endogenous Reporters. Free Radical Biology and Medicine, 2012, 53, S27.	2.9	0
57	Quantitative measurement of mitochondrial membrane potential in cultured cells: calciumâ€induced de― and hyperpolarization of neuronal mitochondria. Journal of Physiology, 2012, 590, 2845-2871.	2.9	172
58	Measurement of Proton Leak and Electron Leak in Isolated Mitochondria. Methods in Molecular Biology, 2012, 810, 165-182.	0.9	72
59	Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium. PLoS ONE, 2012, 7, e47196.	2.5	44
60	Time Lapse Measurement of Mitochondrial Membrane Potential in Absolute Millivolts in Single Intact Cells. FASEB Journal, 2012, 26, 887.11.	0.5	0
61	Assessing mitochondrial dysfunction in cells. Biochemical Journal, 2011, 435, 297-312.	3.7	1,949
62	Mechanisms of Mitochondrial Free Radical Production and their Relationship to the Aging Process. , 2011, , 47-61.		10
63	A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of Cell Science, 2011, 124, 348-358.	2.0	151
64	High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria. PLoS ONE, 2011, 6, e21746.	2.5	398
65	Walking the Oxidative Stress Tightrope: A Perspective from the Naked Mole-Rat, the Longest-Living Rodent. Current Pharmaceutical Design, 2011, 17, 2290-2307.	1.9	44
66	Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radical Biology and Medicine, 2011, 50, 609-616.	2.9	76
67	A Refined Analysis of ROS Production from Mitochondrial sn-Glycerol-3-Phosphate Dehydrogenase (mGPDH). Free Radical Biology and Medicine, 2011, 51, S137-S138.	2.9	0
68	Sites of Mitochondrial ROS Production during Long-Chain Fatty Acid Oxidation. Free Radical Biology and Medicine, 2011, 51, S138.	2.9	0
69	Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1474-1481.	1.0	14
70	The Mechanism of Superoxide Production by the Antimycin-inhibited Mitochondrial Q-cycle. Journal of Biological Chemistry, 2011, 286, 31361-31372.	3.4	158
71	The Regulation and Physiology of Mitochondrial Proton Leak. Physiology, 2011, 26, 192-205.	3.1	335
72	A Model of the Proton Translocation Mechanism of Complex I. Journal of Biological Chemistry, 2011, 286, 17579-17584.	3.4	37

MARTIN D BRAND

#	Article	IF	CITATIONS
73	Intrinsic Bioenergetic Properties and Stress Sensitivity of Dopaminergic Synaptosomes. Journal of Neuroscience, 2011, 31, 4524-4534.	3.6	46
74	Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I). Journal of Biological Chemistry, 2011, 286, 27103-27110.	3.4	168
75	Abstract 3797: Wildtype p53 upregulation induces contrasting bioenergetic and metabolic responses in malignant and non-malignant mammary epithelial cells. , 2011, , .		0
76	Rapid turnover of mitochondrial uncoupling protein 3. Biochemical Journal, 2010, 426, 13-17.	3.7	53
77	Caged mitochondrial uncouplers that are released in response to hydrogen peroxide. Tetrahedron, 2010, 66, 2384-2389.	1.9	17
78	Mitochondrial uncoupling and lifespan. Mechanisms of Ageing and Development, 2010, 131, 463-472.	4.6	136
79	The on-off switches of the mitochondrial uncoupling proteins. Trends in Biochemical Sciences, 2010, 35, 298-307.	7.5	202
80	The sites and topology of mitochondrial superoxide production. Experimental Gerontology, 2010, 45, 466-472.	2.8	954
81	The regulation and turnover of mitochondrial uncoupling proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 785-791.	1.0	122
82	The regulation and turnover of mitochondrial uncoupling proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 84.	1.0	0
83	Are the novel uncoupling proteins acutely regulated by fatty acids and nucleotides?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 86.	1.0	Ο
84	Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radical Biology and Medicine, 2010, 49, 606-611.	2.9	105
85	Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the longâ€lived pigeon, <i>Columba livia</i> . Aging Cell, 2010, 9, 78-91.	6.7	66
86	Biomarkers of aging in <i>Drosophila</i> . Aging Cell, 2010, 9, 466-477.	6.7	76
87	Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion. FEBS Journal, 2010, 277, 2766-2778.	4.7	78
88	Mitochondrial uncoupling protein 2 in pancreatic <i>β</i> â€cells. Diabetes, Obesity and Metabolism, 2010, 12, 134-140.	4.4	22
89	Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of Cell Science, 2010, 123, 3616-3616.	2.0	3
90	Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of Cell Science, 2010, 123, 578-585.	2.0	111

#	Article	IF	CITATIONS
91	Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Bioscience Reports, 2010, 30, 187-192.	2.4	11
92	Plasticity of Oxidative Metabolism in Variable Climates: Molecular Mechanisms. Physiological and Biochemical Zoology, 2010, 83, 721-732.	1.5	105
93	Mitochondrial proton and electron leaks. Essays in Biochemistry, 2010, 47, 53-67.	4.7	601
94	Chapter 23 Measuring Mitochondrial Bioenergetics in INS-1E Insulinoma Cells. Methods in Enzymology, 2009, 457, 405-424.	1.0	44
95	Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13100-13105.	7.1	54
96	Dysregulation of glucose homeostasis in nicotinamide nucleotide transhydrogenase knockout mice is independent of uncoupling protein 2. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1451-1457.	1.0	17
97	Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan. Experimental Gerontology, 2009, 44, 316-327.	2.8	23
98	Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. Journal of Bioenergetics and Biomembranes, 2009, 41, 335-342.	2.3	55
99	Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion. Analytical Chemistry, 2009, 81, 6868-6878.	6.5	290
100	Reactive Oxygen Species Production by Mitochondria. Methods in Molecular Biology, 2009, 554, 165-181.	0.9	282
101	UCPs — unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	10.3	88
102	Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state. FEBS Letters, 2008, 582, 1711-1714.	2.8	35
103	Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 397-403.	1.0	96
104	On the role of uncoupling protein-2 in pancreatic beta cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 973-979.	1.0	62
105	S3.10 A role for uncoupling protein 1 in the formation of the mitochondrial permeability transition pore?. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S27.	1.0	0
106	S12.9 Dynamic regulation of UCP2 concentration in INS-1E pancreatic beta-cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S77.	1.0	0
107	Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1378-1383.	1.0	40
108	Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene, 2008, 411, 69-76.	2.2	64

#	Article	IF	CITATIONS
109	The Efficiency of Cellular Energy Transduction and Its Implications for Obesity. Annual Review of Nutrition, 2008, 28, 13-33.	10.1	109
110	Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Bioscience Reports, 2008, 28, 83-88.	2.4	69
111	Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochemical Journal, 2008, 412, 131-139.	3.7	64
112	Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochemical Journal, 2008, 409, 199-204.	3.7	80
113	High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochemical Journal, 2008, 413, 323-332.	3.7	49
114	Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1086-R1093.	1.8	27
115	4-Hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Report, 2007, 12, 26-29.	4.5	49
116	Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines. Biochemical Journal, 2007, 404, 345-351.	3.7	61
117	Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell, 2007, 6, 607-618.	6.7	238
118	Mitochondrial uncouplers with an extraordinary dynamic range. Biochemical Journal, 2007, 407, 129-140.	3.7	120
119	Research on mitochondria and aging, 2006–2007. Aging Cell, 2007, 6, 417-420.	6.7	36
120	25.1. Mitochondria and Reactive Oxygen Species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, S112.	1.8	0
121	Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 743-752.	1.5	73
122	Novel uncoupling proteins. Novartis Foundation Symposium, 2007, 287, 70-80; discussion 80-91.	1.1	19
123	Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochemical Journal, 2006, 395, 619-628.	3.7	36
124	Flight Activity, Mortality Rates, and Lipoxidative Damage in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 136-145.	3.6	76
125	The Effect of Dietary Restriction on Mitochondrial Protein Density and Flight Muscle Mitochondrial Morphology in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 36-47.	3.6	35
126	Targeting Dinitrophenol to Mitochondria: Limitations to the Development of a Self-limiting Mitochondrial Protonophore. Bioscience Reports, 2006, 26, 231-243.	2.4	63

#	Article	IF	CITATIONS
127	Stronger control of ATP/ADP by proton leak in pancreatic β-cells than skeletal muscle mitochondria. Biochemical Journal, 2006, 393, 151-159.	3.7	55
128	The efficiency and plasticity of mitochondrial energy transduction. Biochemical Society Transactions, 2005, 33, 897.	3.4	262
129	Hydroxynonenal and uncoupling proteins: A model for protection against oxidative damage. BioFactors, 2005, 24, 119-130.	5.4	59
130	Special issue on dietary restriction: Dietary restriction, longevity and ageing—the current state of our knowledge and ignorance. Mechanisms of Ageing and Development, 2005, 126, 911-912.	4.6	22
131	The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical Journal, 2005, 392, 353-362.	3.7	321
132	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB Journal, 2005, 19, 1108-1119.	0.5	87
133	Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metabolism, 2005, 2, 85-93.	16.2	700
134	The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 35-44.	1.0	125
135	Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 150-156.	1.0	51
136	The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 214-219.	1.0	98
137	Analysing microarray data using modular regulation analysis. Bioinformatics, 2004, 20, 1272-1284.	4.1	5
138	Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I). Journal of Biological Chemistry, 2004, 279, 39414-39420.	3.4	415
139	Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell, 2004, 3, 87-95.	6.7	505
140	Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. Journal of Physiology, 2004, 558, 123-135.	2.9	107
141	Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 2004, 37, 755-767.	2.9	900
142	Lack of Correlation between Mitochondrial Reactive Oxygen Species Production and Life Span inDrosophila. Annals of the New York Academy of Sciences, 2004, 1019, 388-391.	3.8	83
143	Prevention of Mitochondrial Oxidative Damage as a Therapeutic Strategy in Diabetes. Diabetes, 2004, 53, S110-S118.	0.6	401
144	Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Letters, 2004, 556, 111-115.	2.8	116

MARTIN D BRAND

#	Article	IF	CITATIONS
145	Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochemical Journal, 2004, 382, 511-517.	3.7	433
146	Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria. Biochemical Journal, 2004, 379, 309-315.	3.7	51
147	Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochemical Society Symposia, 2004, 71, 203-213.	2.7	151
148	Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies. Journal of Bioenergetics and Biomembranes, 2003, 35, 409-418.	2.3	10
149	Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radical Biology and Medicine, 2003, 35, 938-948.	2.9	279
150	Approximate yield of ATP from glucose, designed by donald nicholson: Commentary. Biochemistry and Molecular Biology Education, 2003, 31, 2-4.	1.2	9
151	Nonsteroidal antiinflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells. Arthritis and Rheumatism, 2003, 48, 1438-1444.	6.7	69
152	A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO Journal, 2003, 22, 4103-4110.	7.8	519
153	Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism. Journal of Biological Chemistry, 2003, 278, 17190-17197.	3.4	740
154	Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus). Biochemical and Biophysical Research Communications, 2003, 312, 983-988.	2.1	49
155	Superoxide Activates Uncoupling Proteins by Generating Carbon-centered Radicals and Initiating Lipid Peroxidation. Journal of Biological Chemistry, 2003, 278, 48534-48545.	3.4	283
156	Superoxide Stimulates a Proton Leak in Potato Mitochondria That Is Related to the Activity of Uncoupling Protein. Journal of Biological Chemistry, 2003, 278, 22298-22302.	3.4	123
157	Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1306-R1313.	1.8	68
158	Characterization of the human, mouse and rat PGC1beta (peroxisome-proliferator-activated) Tj ETQq0 0 0 rgBT μ	Overlock	10 Tf 50 222 185
159	Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochemical Journal, 2003, 376, 741-748.	3.7	134
160	Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochemical Society Transactions, 2003, 31, 1300-1301.	3.4	255
161	Structure and Function of Mitochondria in Hepatopancreas Cells from Metabolically Depressed Snails. Physiological and Biochemical Zoology, 2002, 75, 134-144.	1.5	14

162The Basal Proton Conductance of Skeletal Muscle Mitochondria from Transgenic Mice
Overexpressing or Lacking Uncoupling Protein-3. Journal of Biological Chemistry, 2002, 277, 2773-2778.3.4180

#	Article	IF	CITATIONS
163	Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side. Journal of Biological Chemistry, 2002, 277, 47129-47135.	3.4	355
164	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49.	3.7	73
165	Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochemical Journal, 2002, 366, 565-571.	3.7	28
166	Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochemical Journal, 2002, 368, 597-603.	3.7	168
167	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49-56.	3.7	107
168	Simplifying metabolic complexity. Biochemical Society Transactions, 2002, 30, A5-A5.	3.4	1
169	Control analysis of gene expression. Biochemical Society Transactions, 2002, 30, A8-A8.	3.4	0
170	Control analysis of gene expression. Biochemical Society Transactions, 2002, 30, A32-A32.	3.4	0
171	Control Analysis of Metabolic Depression. Cell and Molecular Response To Stress, 2002, , 283-296.	0.4	1
172	Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. Journal of Biological Chemistry, 2002, 277, 44784-44790.	3.4	1,316
173	Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R372-R382.	1.8	52
174	Superoxide activates mitochondrial uncoupling proteins. Nature, 2002, 415, 96-99.	27.8	1,236
175	Does any yeast mitochondrial carrier have a native uncoupling protein function?. Journal of Bioenergetics and Biomembranes, 2002, 34, 165-176.	2.3	31
176	Control analysis of DNA microarray expression data. Molecular Biology Reports, 2002, 29, 67-71.	2.3	4
177	Signaling Takes a Breath – New Quantitative Perspectives on Bioenergetics and Signal Transduction. Immunity, 2001, 15, 497-502.	14.3	124
178	A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochemical Journal, 2001, 356, 779.	3.7	68
179	A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochemical Journal, 2001, 356, 779-789.	3.7	100
180	Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Reviews, 2001, 2, 255-265.	6.5	216

#	Article	IF	CITATIONS
181	The responses of rat hepatocytes to glucagon and adrenaline. FEBS Journal, 2001, 265, 1043-1055.	0.2	28
182	Physiological Levels of Mammalian Uncoupling Protein 2 Do Not Uncouple Yeast Mitochondria. Journal of Biological Chemistry, 2001, 276, 18633-18639.	3.4	84
183	Simplifying metabolic complexity. Biochemical Society Transactions, 2001, 30, 25.	3.4	6
184	Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria. Biochemical Journal, 2000, 348, 209.	3.7	13
185	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307.	3.7	14
186	Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria. Biochemical Journal, 2000, 348, 209-213.	3.7	48
187	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307-311.	3.7	49
188	Bioenergetics of immune functions: fundamental and therapeutic aspects. Trends in Immunology, 2000, 21, 194-199.	7.5	239
189	Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature, 2000, 406, 415-418.	27.8	560
190	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	10.3	9
191	Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Experimental Gerontology, 2000, 35, 811-820.	2.8	688
192	Therapeutically targeting lymphocyte energy metabolism by high-dose glucocorticoids. Biochemical Pharmacology, 2000, 59, 597-603.	4.4	23
193	Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails. FASEB Journal, 2000, 14, 999-1004.	0.5	35
194	Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E433-E446.	3.5	65
195	Quantitation of signal transduction. FASEB Journal, 2000, 14, 2581-2588.	0.5	23
196	Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8670-8674.	7.1	151
197	Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 57-70.	1.0	72
198	Mitochondrial Proton Conductance, Standard Metabolic Rate and Metabolic Depression. , 2000, , 413-430.		10

MARTIN D BRAND

#	Article	IF	CITATIONS
199	Regulation of Energy Metabolism in Hepatocytes. , 2000, , 131-138.		0
200	Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. American Journal of Physiology - Cell Physiology, 1999, 276, C692-C699.	4.6	237
201	Quantifying elasticity analysis: how external effectors cause changes to metabolic systems. BioSystems, 1999, 49, 151-159.	2.0	26
202	Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. FEBS Journal, 1999, 266, 737-749.	0.2	47
203	Mitochondrial proton leak and the uncoupling proteins. Journal of Bioenergetics and Biomembranes, 1999, 31, 517-524.	2.3	68
204	Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochemical Pharmacology, 1999, 58, 363-368.	4.4	134
205	Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. FEBS Journal, 1999, 263, 671-685.	0.2	90
206	UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Letters, 1999, 462, 257-260.	2.8	204
207	Effects of the mitogen concanavalin A on pathways of thymocyte energy metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 129-138.	1.0	37
208	Title is missing!. , 1998, 184, 13-20.		56
209	Errors Associated with Metabolic Control Analysis. Application of Monte-Carlo Simulation of Experimental Data. Journal of Theoretical Biology, 1998, 194, 223-233.	1.7	23
210	The Proton Permeability of the Inner Membrane of Liver Mitochondria from Ectothermic and Endothermic Vertebrates and from Obese Rats: Correlations with Standard Metabolic Rate and Phospholipid Fatty Acid Composition. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 325-334.	1.6	207
211	Control analysis of systems with reaction blocks that â€~cross-talk'. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 284-290.	1.0	14
212	Changes in the Hepatic Mitochondrial Respiratory System in the Transition from Weaning to Adulthood in Rats. Archives of Biochemistry and Biophysics, 1998, 352, 240-246.	3.0	17
213	Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells. , 1998, , 13-20.		12
214	Methylprednisolone inhibits uptake of Ca2+ and Na+ ions into concanavalin A-stimulated thymocytes. Biochemical Journal, 1997, 326, 329-332.	3.7	50
215	effect of fatty acid composition. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 157-164.	2.6	75
216	The Physiological Significance of Mitochondrial Proton Leak in Animal Cells and Tissues. Bioscience Reports, 1997, 17, 9-16.	2.4	213

#	Article	IF	CITATIONS
217	Proton leak and control of oxidative phosphorylation in perfused, resting rat skeletal muscle. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1276, 45-50.	1.0	46
218	The effect of chloroform on mitochondrial energy transduction. Biochemical Journal, 1996, 320, 837-845.	3.7	14
219	A HIERARCHY OF ATP-CONSUMING PROCESSES. Biochemical Society Transactions, 1996, 24, 519S-519S.	3.4	0
220	Top Down Metabolic Control Analysis. Journal of Theoretical Biology, 1996, 182, 351-360.	1.7	125
221	Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. Molecular and Cellular Biochemistry, 1996, 158, 133-8.	3.1	17
222	The mechanism of stimulation of respiration in isolated hepatocytes from rats fed an energy-dense diet. Journal of Nutritional Biochemistry, 1996, 7, 571-576.	4.2	9
223	Top-Down Control Analysis of Systems with More than one Common Intermediate. FEBS Journal, 1995, 231, 579-586.	0.2	10
224	Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1272, 154-158.	3.8	88
225	Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 315-322.	1.0	46
226	Top-Down Control Analysis of Systems with More than one Common Intermediate. FEBS Journal, 1995, 231, 579-586.	0.2	29
227	Liposomes from mammalian liver mitochondria are more polyunsaturated and leakier to protons than those from reptiles. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 108, 181-188.	0.2	52
228	The Sum of Flux Control Coefficients in the Electron-Transport Chain of Mitochondria. FEBS Journal, 1994, 226, 819-829.	0.2	28
229	Localisation of the Sites of Action of Cadmium on Oxidative Phosphorylation in Potato Tuber Mitochondria Using Top-Down Elasticity Analysis. FEBS Journal, 1994, 225, 897-906.	0.2	47
230	Effects of Cadmium on the Control and Internal Regulation of Oxidative Phosphorylation in Potato Tuber Mitochondria. FEBS Journal, 1994, 225, 907-922.	0.2	32
231	Quantitative Determination of the Regulation of Oxidative Phosphorylation by Cadmium in Potato Tuber Mitochondria. FEBS Journal, 1994, 225, 923-935.	0.2	38
232	The effects of methylprednisolone on oxidative phosphorylation in Concanavalin-A-stimulated thymocytes. Top-down elasticity analysis and control analysis. FEBS Journal, 1994, 223, 513-519.	0.2	50
233	Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 405-416.	1.0	226
234	The causes and functions of mitochondrial proton leak. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 132-139.	1.0	415

#	Article	IF	CITATIONS
235	Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Canadian Journal of Physiology and Pharmacology, 1994, 72, 899-908.	1.4	39
236	Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature, 1993, 362, 628-630.	27.8	241
237	Effects of methylprednisolone on the energy metabolism of quiescent and conA-stimulated thymocytes of the rat. Bioscience Reports, 1993, 13, 41-52.	2.4	28
238	The choline transporter is the major site of control of choline oxidation in isolated rat liver mitochondria. FEBS Letters, 1993, 321, 24-26.	2.8	25
239	Characterization of betaine efflux from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 269-274.	1.0	15
240	A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis?. Biochimica Et Biophysica Acta - General Subjects, 1993, 1156, 135-143.	2.4	33
241	Control of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Society Transactions, 1993, 21, 757-762.	3.4	39
242	Effects of thyroid hormones on oxidative phosphorylation. Biochemical Society Transactions, 1993, 21, 785-792.	3.4	63
243	Mechanisms of the Effects of Hypothyroidism and Hyperthyroidism in Rats on Respiration Rate in Isolated Hepatocytes. , 1993, , 351-356.		0
244	The nature of betaine efflux from rat liver mitochondria. Biochemical Society Transactions, 1992, 20, 247S-247S.	3.4	2
245	Choline transport into rat liver mitochondria. Biochemical Society Transactions, 1992, 20, 248S-248S.	3.4	6
246	Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. FEBS Journal, 1992, 210, 775-784.	0.2	40
247	ConA induced changes in energy metabolism of rat thymocytes. Bioscience Reports, 1992, 12, 381-386.	2.4	30
248	The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. FEBS Journal, 1992, 206, 775-781.	0.2	88
249	On the nature of the mitochondrial proton leak. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1059, 55-62.	1.0	70
250	Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. FEBS Journal, 1991, 195, 449-454.	0.2	42
251	Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. FEBS Journal, 1990, 187, 169-174.	0.2	80
252	Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. FEBS Journal, 1990, 188, 313-319.	0.2	253

#	Article	IF	CITATIONS
253	A 'top-down' approach to the determination of control coefficients in metabolic control theory. FEBS Journal, 1990, 188, 321-325.	0.2	189
254	Control of respiration and oxidative phosphorylation in isolated rat liver cells. FEBS Journal, 1990, 192, 355-362.	0.2	157
255	The contribution of the leak of protons across the mitochondrial inner membrane to standard metabolic rate. Journal of Theoretical Biology, 1990, 145, 267-286.	1.7	115
256	The mechanism of Ca2+ stimulation of citrulline and N-acetylglutamate synthesis by mitochondria. Biochimica Et Biophysica Acta - General Subjects, 1990, 1033, 85-90.	2.4	9
257	Stimulation of the electron transport chain in mitochondria isolated from rats treated with mannoheptulose or glucagon. Archives of Biochemistry and Biophysics, 1990, 283, 278-284.	3.0	32
258	The proton leak across the mitochondrial inner membrane. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 128-133.	1.0	228
259	A quantitative assessment of the use of 36Clâ^ distribution to measure plasma membrane potential in isolated hepatocytes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 115-123.	2.6	23
260	Hypothyroidism in rats decreases mitochondrial inner membrane cation permeability. FEBS Letters, 1989, 248, 175-178.	2.8	43
261	The contribution of ATP turnover by the Na+/K+-ATPase to the rate of respiration of hepatocytes. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 976, 241-245.	1.0	45
262	Glucagon increases mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase activity <i>in vivo</i> by desuccinylating the enzyme. Biochemical Society Transactions, 1989, 17, 147-148.	3.4	5
263	Control of acetoacetate production from exogenous palmitoyl-CoA in isolated rat liver mitochondria. Biochemical Society Transactions, 1989, 17, 1089-1090.	3.4	13
264	Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. FEBS Journal, 1988, 173, 637-644.	0.2	46
265	The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. FEBS Journal, 1988, 173, 645-651.	0.2	51
266	Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. FEBS Journal, 1988, 178, 511-518.	0.2	140
267	Mannoheptulose and glucagon treatment of fed rats stimulates 3-hydroxy-3-methylglutaryl-CoA synthase activity in rat liver mitochondria by desuccinylation of the enzyme. Biochemical Society Transactions, 1988, 16, 633-634.	3.4	2
268	3-Hydroxy-3-methylglutaryl coenzyme A synthase activity in rat liver increases with increased ketogenesis. Biochemical Society Transactions, 1987, 15, 1068-1069.	3.4	6
269	Stimulation of 3-hydroxy-3-methylglutaryl coenzyme A synthase activity in rat liver mitochondria isolated from glucagon-treated rats. Biochemical Society Transactions, 1987, 15, 1133-1134.	3.4	2
270	CONTROL OF ELECTRON FLUX THROUGH THE RESPIRATORY CHAIN IN MITOCHONDRIA AND CELLS. Biological Reviews, 1987, 62, 141-193.	10.4	233

#	Article	IF	CITATIONS
271	Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Nature, 1987, 329, 170-172.	27.8	62
272	The control of electron flux through cytochrome oxidase. Biochemical Society Transactions, 1986, 14, 887-888.	3.4	5
273	Substrate dependence of the relationship between membrane potential and respiration rate in mitochondria. Biochemical Society Transactions, 1986, 14, 1042-1043.	3.4	7
274	Some properties of rat liver mitochondria with low Ca2+ content. Biochemical Society Transactions, 1986, 14, 1182-1182.	3.4	3
275	Mechanism of the stimulation of respiration by added substrate in hepatocytes. Biochemical Society Transactions, 1986, 14, 1200-1201.	3.4	10
276	Pathways of Ca2+ efflux from liver and heart mitochondria. Biochemical Society Transactions, 1985, 13, 688-689.	3.4	2
277	Respiratory control in the mitochondrial <i>bc</i> 1 complex. Biochemical Society Transactions, 1985, 13, 693-693.	3.4	0
278	Apparent variation in mitochondrial H+/2e caused by Mg2+. Biochemical Society Transactions, 1985, 13, 695-696.	3.4	6
279	Light changes the membrane potential and ion balances of retinal rod disks. FEBS Letters, 1985, 182, 380-384.	2.8	3
280	Target size analysis of rhodopsin in retinal rod disk membranes. Biochemical and Biophysical Research Communications, 1984, 122, 56-61.	2.1	4
281	Chemical Modification of the Mitochodrial bc1 by N,N' -Dicyclohexylcarbodiimide Inhibits Proton Translocation. FEBS Journal, 1983, 132, 595-601.	0.2	28
282	Size changes of phosphodiesterase in bovine rod outer segments on illumination. Biochemistry, 1983, 22, 1704-1708.	2.5	9
283	Rhodopsin in the disc membrane is a monomer. Biochemical Society Transactions, 1983, 11, 691-692.	3.4	4
284	Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes. FEBS Letters, 1982, 150, 122-124.	2.8	25
285	CALCIUM EFFLUX FROM ISOLATED LIVER MITOCHONDRIA FOLLOWING OXIDATION OF ENDOGENOUS NUCLEOTIDES. Biochemical Society Transactions, 1981, 9, 135P-135P.	3.4	0
286	Stoicheiometry of Charge and Proton Translocation in Mitochondria: Steady-State Measurement of Charge/O and P/O Ratios. Biochemical Society Transactions, 1979, 7, 874-880.	3.4	12
287	A New Steady-State Method for Investigating Mitochondrial Proton Transport. Biochemical Society Transactions, 1979, 7, 221-223.	3.4	4
288	Measurement of the intramitochondrial PO ratio. Biochemical and Biophysical Research Communications, 1979, 91, 592-598.	2.1	7

#	Article	IF	CITATIONS
289	[70] Determination of the H+/site and Ca2+/site ratios of mitochondrial electron transport. Methods in Enzymology, 1979, 55, 640-656.	1.0	11
290	The Stoicheiometric Relationships between Electron Transport, Proton Translocation and Adenosine Triphosphate Synthesis and Hydrolysis in Mitochondria. Biochemical Society Transactions, 1977, 5, 1615-1620.	3.4	45
291	Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 437-441.	7.1	119
292	The H+/site ratio of mitochondrial electron transport. Journal of Cellular Physiology, 1976, 89, 595-602.	4.1	7
293	Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochimica Et Biophysica Acta - Biomembranes, 1974, 367, 102-108.	2.6	109
294	Inhibition of Mitochondria1 Pyruvate Transport by Phenylpyruvate and α-Oxo-4-methylpentanoate. Biochemical Society Transactions, 1974, 2, 980-982.	3.4	0
295	Novel Uncoupling Proteins. Novartis Foundation Symposium, 0, , 70-91.	1.1	42