Martin D Brand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9297132/publications.pdf

Version: 2024-02-01

295 papers 34,003 citations

89 h-index 4015 176 g-index

310 all docs

310 docs citations

310 times ranked

27733 citing authors

#	Article	IF	CITATIONS
1	Assessing mitochondrial dysfunction in cells. Biochemical Journal, 2011, 435, 297-312.	3.7	1,949
2	Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. Journal of Biological Chemistry, 2002, 277, 44784-44790.	3.4	1,316
3	Superoxide activates mitochondrial uncoupling proteins. Nature, 2002, 415, 96-99.	27.8	1,236
4	The sites and topology of mitochondrial superoxide production. Experimental Gerontology, 2010, 45, 466-472.	2.8	954
5	Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 2004, 37, 755-767.	2.9	900
6	Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radical Biology and Medicine, 2016, 100, 14-31.	2.9	753
7	Mitofusin-2 Determines Mitochondrial Network Architecture and Mitochondrial Metabolism. Journal of Biological Chemistry, 2003, 278, 17190-17197.	3.4	740
8	Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metabolism, 2005, 2, 85-93.	16.2	700
9	Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Experimental Gerontology, 2000, 35, 811-820.	2.8	688
10	Mitochondrial proton and electron leaks. Essays in Biochemistry, 2010, 47, 53-67.	4.7	601
11	Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature, 2000, 406, 415-418.	27.8	560
12	Mitochondrial Complex II Can Generate Reactive Oxygen Species at High Rates in Both the Forward and Reverse Reactions. Journal of Biological Chemistry, 2012, 287, 27255-27264.	3.4	540
13	A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO Journal, 2003, 22, 4103-4110.	7.8	519
14	Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell, 2004, 3, 87-95.	6.7	505
15	Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biology, 2013, 1, 304-312.	9.0	476
16	Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochemical Journal, 2004, 382, 511-517.	3.7	433
17	The causes and functions of mitochondrial proton leak. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1187, 132-139.	1.0	415
18	Inhibitors of the Quinone-binding Site Allow Rapid Superoxide Production from Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I). Journal of Biological Chemistry, 2004, 279, 39414-39420.	3.4	415

#	Article	IF	Citations
19	Prevention of Mitochondrial Oxidative Damage as a Therapeutic Strategy in Diabetes. Diabetes, 2004, 53, S110-S118.	0.6	401
20	High Throughput Microplate Respiratory Measurements Using Minimal Quantities Of Isolated Mitochondria. PLoS ONE, 2011, 6, e21746.	2.5	398
21	Superoxide Activates Mitochondrial Uncoupling Protein 2 from the Matrix Side. Journal of Biological Chemistry, 2002, 277, 47129-47135.	3.4	355
22	Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Journal of Biological Chemistry, 2017, 292, 7189-7207.	3.4	343
23	Production of superoxide and hydrogen peroxide from specific mitochondrial sites under different bioenergetic conditions. Journal of Biological Chemistry, 2017, 292, 16804-16809.	3.4	336
24	The Regulation and Physiology of Mitochondrial Proton Leak. Physiology, 2011, 26, 192-205.	3.1	335
25	The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochemical Journal, 2005, 392, 353-362.	3.7	321
26	Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion. Analytical Chemistry, 2009, 81, 6868-6878.	6.5	290
27	Superoxide Activates Uncoupling Proteins by Generating Carbon-centered Radicals and Initiating Lipid Peroxidation. Journal of Biological Chemistry, 2003, 278, 48534-48545.	3.4	283
28	Reactive Oxygen Species Production by Mitochondria. Methods in Molecular Biology, 2009, 554, 165-181.	0.9	282
29	Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radical Biology and Medicine, 2003, 35, 938-948.	2.9	279
30	The contributions of respiration and glycolysis to extracellular acid production. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 171-181.	1.0	264
31	The efficiency and plasticity of mitochondrial energy transduction. Biochemical Society Transactions, 2005, 33, 897.	3.4	262
32	Sites of Superoxide and Hydrogen Peroxide Production by Muscle Mitochondria Assessed ex Vivo under Conditions Mimicking Rest and Exercise. Journal of Biological Chemistry, 2015, 290, 209-227.	3.4	261
33	The 2-Oxoacid Dehydrogenase Complexes in Mitochondria Can Produce Superoxide/Hydrogen Peroxide at Much Higher Rates Than Complex I. Journal of Biological Chemistry, 2014, 289, 8312-8325.	3.4	257
34	Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochemical Society Transactions, 2003, 31, 1300-1301.	3.4	255
35	Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. FEBS Journal, 1990, 188, 313-319.	0.2	253
36	Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature, 1993, 362, 628-630.	27.8	241

#	Article	IF	CITATIONS
37	Bioenergetics of immune functions: fundamental and therapeutic aspects. Trends in Immunology, 2000, 21, 194-199.	7.5	239
38	Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell, 2007, 6, 607-618.	6.7	238
39	Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. American Journal of Physiology - Cell Physiology, 1999, 276, C692-C699.	4.6	237
40	CONTROL OF ELECTRON FLUX THROUGH THE RESPIRATORY CHAIN IN MITOCHONDRIA AND CELLS. Biological Reviews, 1987, 62, 141-193.	10.4	233
41	The proton leak across the mitochondrial inner membrane. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 128-133.	1.0	228
42	Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 405-416.	1.0	226
43	The Role of Mitochondrially Derived ATP in Synaptic Vesicle Recycling. Journal of Biological Chemistry, 2015, 290, 22325-22336.	3.4	219
44	Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obesity Reviews, 2001, 2, 255-265.	6.5	216
45	The Physiological Significance of Mitochondrial Proton Leak in Animal Cells and Tissues. Bioscience Reports, 1997, 17, 9-16.	2.4	213
46	The Proton Permeability of the Inner Membrane of Liver Mitochondria from Ectothermic and Endothermic Vertebrates and from Obese Rats: Correlations with Standard Metabolic Rate and Phospholipid Fatty Acid Composition. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1998, 119, 325-334.	1.6	207
47	UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Letters, 1999, 462, 257-260.	2.8	204
48	The on-off switches of the mitochondrial uncoupling proteins. Trends in Biochemical Sciences, 2010, 35, 298-307.	7.5	202
49	A 'top-down' approach to the determination of control coefficients in metabolic control theory. FEBS Journal, 1990, 188, 321-325.	0.2	189
50	Characterization of the human, mouse and rat PGC1beta (peroxisome-proliferator-activated) Tj ETQq0 0 0 rgBT	Overlock :	10 Tf 50 222 185
51	The Basal Proton Conductance of Skeletal Muscle Mitochondria from Transgenic Mice Overexpressing or Lacking Uncoupling Protein-3. Journal of Biological Chemistry, 2002, 277, 2773-2778.	3.4	180
52	Quantitative measurement of mitochondrial membrane potential in cultured cells: calciumâ€induced de― and hyperpolarization of neuronal mitochondria. Journal of Physiology, 2012, 590, 2845-2871.	2.9	172
53	Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochemical Journal, 2002, 368, 597-603.	3.7	168
54	Evidence for Two Sites of Superoxide Production by Mitochondrial NADH-Ubiquinone Oxidoreductase (Complex I). Journal of Biological Chemistry, 2011, 286, 27103-27110.	3.4	168

#	Article	IF	Citations
55	Suppressors of Superoxide-H 2 O 2 Production at Site I Q of Mitochondrial Complex I Protect against Stem Cell Hyperplasia and Ischemia-Reperfusion Injury. Cell Metabolism, 2016, 24, 582-592.	16.2	162
56	The Mechanism of Superoxide Production by the Antimycin-inhibited Mitochondrial Q-cycle. Journal of Biological Chemistry, 2011, 286, 31361-31372.	3.4	158
57	Control of respiration and oxidative phosphorylation in isolated rat liver cells. FEBS Journal, 1990, 192, 355-362.	0.2	157
58	Suppressors of superoxide production from mitochondrial complex III. Nature Chemical Biology, 2015, 11, 834-836.	8.0	157
59	The role of mitochondrial function and cellular bioenergetics in ageing and disease. British Journal of Dermatology, 2013, 169, 1-8.	1.5	154
60	Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8670-8674.	7.1	151
61	A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of Cell Science, 2011, 124, 348-358.	2.0	151
62	Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochemical Society Symposia, 2004, 71, 203-213.	2.7	151
63	A Refined Analysis of Superoxide Production by Mitochondrial sn-Glycerol 3-Phosphate Dehydrogenase. Journal of Biological Chemistry, 2012, 287, 42921-42935.	3.4	144
64	Altered relationship between protonmotive force and respiration rate in non-phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. FEBS Journal, 1988, 178, 511-518.	0.2	140
65	Mitochondrial uncoupling and lifespan. Mechanisms of Ageing and Development, 2010, 131, 463-472.	4.6	136
66	Equivalent doses and relative drug potencies for non-genomic glucocorticoid effects: a novel glucocorticoid hierarchy. Biochemical Pharmacology, 1999, 58, 363-368.	4.4	134
67	Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochemical Journal, 2003, 376, 741-748.	3.7	134
68	Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radical Biology and Medicine, 2012, 53, 1807-1817.	2.9	133
69	Top Down Metabolic Control Analysis. Journal of Theoretical Biology, 1996, 182, 351-360.	1.7	125
70	The reactions catalysed by the mitochondrial uncoupling proteins UCP2 and UCP3. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 35-44.	1.0	125
71	Signaling Takes a Breath – New Quantitative Perspectives on Bioenergetics and Signal Transduction. Immunity, 2001, 15, 497-502.	14.3	124
72	Superoxide Stimulates a Proton Leak in Potato Mitochondria That Is Related to the Activity of Uncoupling Protein. Journal of Biological Chemistry, 2003, 278, 22298-22302.	3.4	123

#	Article	IF	Citations
73	The regulation and turnover of mitochondrial uncoupling proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 785-791.	1.0	122
74	Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements. PLoS ONE, 2016, 11, e0152016.	2.5	121
75	Mitochondrial uncouplers with an extraordinary dynamic range. Biochemical Journal, 2007, 407, 129-140.	3.7	120
76	Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria Proceedings of the National Academy of Sciences of the United States of America, 1976, 73, 437-441.	7.1	119
77	Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Letters, 2004, 556, 111-115.	2.8	116
78	The contribution of the leak of protons across the mitochondrial inner membrane to standard metabolic rate. Journal of Theoretical Biology, 1990, 145, 267-286.	1.7	115
79	Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of Cell Science, 2010, 123, 578-585.	2.0	111
80	Inhibition of mitochondrial pyruvate transport by phenylpyruvate and \hat{l}_{\pm} -ketoisocaproate. Biochimica Et Biophysica Acta - Biomembranes, 1974, 367, 102-108.	2.6	109
81	The Efficiency of Cellular Energy Transduction and Its Implications for Obesity. Annual Review of Nutrition, 2008, 28, 13-33.	10.1	109
82	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49-56.	3.7	107
83	Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. Journal of Physiology, 2004, 558, 123-135.	2.9	107
84	Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radical Biology and Medicine, 2010, 49, 606-611.	2.9	105
85	Plasticity of Oxidative Metabolism in Variable Climates: Molecular Mechanisms. Physiological and Biochemical Zoology, 2010, 83, 721-732.	1.5	105
86	Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2013, 61, 298-309.	2.9	103
87	A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochemical Journal, 2001, 356, 779-789.	3.7	100
88	The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 214-219.	1.0	98
89	Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 397-403.	1.0	96
90	Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. FEBS Journal, 1999, 263, 671-685.	0.2	90

#	Article	IF	Citations
91	The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. FEBS Journal, 1992, 206, 775-781.	0.2	88
92	Control and kinetic analysis of ischemia-damaged heart mitochondria: which parts of the oxidative phosphorylation system are affected by ischemia?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1995, 1272, 154-158.	3.8	88
93	UCPs â€" unlikely calcium porters. Nature Cell Biology, 2008, 10, 1235-1237.	10.3	88
94	Transcript and metabolite analysis of the effects of tamoxifen in rat liver reveals inhibition of fatty acid synthesis in the presence of hepatic steatosis. FASEB Journal, 2005, 19, 1108-1119.	0.5	87
95	Physiological Levels of Mammalian Uncoupling Protein 2 Do Not Uncouple Yeast Mitochondria. Journal of Biological Chemistry, 2001, 276, 18633-18639.	3.4	84
96	Lack of Correlation between Mitochondrial Reactive Oxygen Species Production and Life Span inDrosophila. Annals of the New York Academy of Sciences, 2004, 1019, 388-391.	3.8	83
97	Glucagon activates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. FEBS Journal, 1990, 187, 169-174.	0.2	80
98	Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochemical Journal, 2008, 409, 199-204.	3.7	80
99	Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion. FEBS Journal, 2010, 277, 2766-2778.	4.7	78
100	Flight Activity, Mortality Rates, and Lipoxidative Damage in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 136-145.	3.6	76
101	Biomarkers of aging in <i>Drosophila</i> . Aging Cell, 2010, 9, 466-477.	6.7	76
102	Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species. Free Radical Biology and Medicine, 2011, 50, 609-616.	2.9	76
103	The Determination and Analysis of Site-Specific Rates of Mitochondrial Reactive Oxygen Species Production. Methods in Enzymology, 2013, 526, 189-217.	1.0	76
104	effect of fatty acid composition. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 157-164.	2.6	75
105	Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. Free Radical Biology and Medicine, 2019, 130, 140-150.	2.9	75
106	Artifactual uncoupling by uncoupling protein 3 in yeast mitochondria at the concentrations found in mouse and rat skeletal-muscle mitochondria. Biochemical Journal, 2002, 361, 49.	3.7	73
107	Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2007, 177, 743-752.	1.5	73
108	Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1457, 57-70.	1.0	72

#	Article	IF	Citations
109	Measurement of Proton Leak and Electron Leak in Isolated Mitochondria. Methods in Molecular Biology, 2012, 810, 165-182.	0.9	72
110	Osteoblast-like MC3T3-E1 Cells Prefer Glycolysis for ATP Production but Adipocyte-like 3T3-L1 Cells Prefer Oxidative Phosphorylation. Journal of Bone and Mineral Research, 2018, 33, 1052-1065.	2.8	71
111	On the nature of the mitochondrial proton leak. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1059, 55-62.	1.0	70
112	Nonsteroidal antiinflammatory drugs and a selective cyclooxygenase 2 inhibitor uncouple mitochondria in intact cells. Arthritis and Rheumatism, 2003, 48, 1438-1444.	6.7	69
113	Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Bioscience Reports, 2008, 28, 83-88.	2.4	69
114	Mitochondrial proton leak and the uncoupling proteins. Journal of Bioenergetics and Biomembranes, 1999, 31, 517-524.	2.3	68
115	A mitochondrial uncoupling artifact can be caused by expression of uncoupling protein 1 in yeast. Biochemical Journal, 2001, 356, 779.	3.7	68
116	Tissue-specific depression of mitochondrial proton leak and substrate oxidation in hibernating arctic ground squirrels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1306-R1313.	1.8	68
117	Dependence of Brown Adipose Tissue Function on CD36-Mediated Coenzyme Q Uptake. Cell Reports, 2015, 10, 505-515.	6.4	67
118	Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the longâ€lived pigeon, <i>Columba livia < /i>. Aging Cell, 2010, 9, 78-91.</i>	6.7	66
119	Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate. Journal of Visualized Experiments, 2015, , e53464.	0.3	66
120	Impact of endotoxin on UCP homolog mRNA abundance, thermoregulation, and mitochondrial proton leak kinetics. American Journal of Physiology - Endocrinology and Metabolism, 2000, 279, E433-E446.	3.5	65
121	Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radical Biology and Medicine, 2013, 65, 1047-1059.	2.9	65
122	Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene, 2008, 411, 69-76.	2.2	64
123	Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochemical Journal, 2008, 412, 131-139.	3.7	64
124	Production of superoxide/H2O2 by dihydroorotate dehydrogenase in rat skeletal muscle mitochondria. Free Radical Biology and Medicine, 2014, 72, 149-155.	2.9	64
125	Effects of thyroid hormones on oxidative phosphorylation. Biochemical Society Transactions, 1993, 21, 785-792.	3.4	63
126	Targeting Dinitrophenol to Mitochondria: Limitations to the Development of a Self-limiting Mitochondrial Protonophore. Bioscience Reports, 2006, 26, 231-243.	2.4	63

#	Article	IF	CITATIONS
127	Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Nature, 1987, 329, 170-172.	27.8	62
128	On the role of uncoupling protein-2 in pancreatic beta cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 973-979.	1.0	62
129	Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biology, 2014, 2, 901-909.	9.0	62
130	Were inefficient mitochondrial haplogroups selected during migrations of modern humans? A test using modular kinetic analysis of coupling in mitochondria from cybrid cell lines. Biochemical Journal, 2007, 404, 345-351.	3.7	61
131	Hydroxynonenal and uncoupling proteins: A model for protection against oxidative damage. BioFactors, 2005, 24, 119-130.	5.4	59
132	Title is missing!. , 1998, 184, 13-20.		56
133	Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radical Biology and Medicine, 2016, 91, 247-255.	2.9	56
134	Riding the tiger – physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 592-661.	5.2	56
135	Stronger control of ATP/ADP by proton leak in pancreatic \hat{l}^2 -cells than skeletal muscle mitochondria. Biochemical Journal, 2006, 393, 151-159.	3.7	55
136	Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria. Journal of Bioenergetics and Biomembranes, 2009, 41, 335-342.	2.3	55
137	Leptin-mediated changes in hepatic mitochondrial metabolism, structure, and protein levels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13100-13105.	7.1	54
138	Rapid turnover of mitochondrial uncoupling protein 3. Biochemical Journal, 2010, 426, 13-17.	3.7	53
139	Liposomes from mammalian liver mitochondria are more polyunsaturated and leakier to protons than those from reptiles. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1994, 108, 181-188.	0.2	52
140	Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R372-R382.	1.8	52
141	The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. FEBS Journal, 1988, 173, 645-651.	0.2	51
142	Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria. Biochemical Journal, 2004, 379, 309-315.	3.7	51
143	Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1709, 150-156.	1.0	51
144	The effects of methylprednisolone on oxidative phosphorylation in Concanavalin-A-stimulated thymocytes. Top-down elasticity analysis and control analysis. FEBS Journal, 1994, 223, 513-519.	0.2	50

#	Article	IF	Citations
145	Methylprednisolone inhibits uptake of Ca2+ and Na+ ions into concanavalin A-stimulated thymocytes. Biochemical Journal, 1997, 326, 329-332.	3.7	50
146	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307-311.	3.7	49
147	Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus). Biochemical and Biophysical Research Communications, 2003, 312, 983-988.	2.1	49
148	4-Hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Report, 2007, 12, 26-29.	4.5	49
149	High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochemical Journal, 2008, 413, 323-332.	3.7	49
150	Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria. Biochemical Journal, 2000, 348, 209-213.	3.7	48
151	Localisation of the Sites of Action of Cadmium on Oxidative Phosphorylation in Potato Tuber Mitochondria Using Top-Down Elasticity Analysis. FEBS Journal, 1994, 225, 897-906.	0.2	47
152	Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. FEBS Journal, 1999, 266, 737-749.	0.2	47
153	Fatty Acids Change the Conformation of Uncoupling Protein 1 (UCP1). Journal of Biological Chemistry, 2012, 287, 36845-36853.	3.4	47
154	Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. FEBS Journal, 1988, 173, 637-644.	0.2	46
155	Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 315-322.	1.0	46
156	Proton leak and control of oxidative phosphorylation in perfused, resting rat skeletal muscle. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1276, 45-50.	1.0	46
157	Intrinsic Bioenergetic Properties and Stress Sensitivity of Dopaminergic Synaptosomes. Journal of Neuroscience, 2011, 31, 4524-4534.	3.6	46
158	Novel Inhibitors of Mitochondrial sn-Glycerol 3-phosphate Dehydrogenase. PLoS ONE, 2014, 9, e89938.	2.5	46
159	The Stoicheiometric Relationships between Electron Transport, Proton Translocation and Adenosine Triphosphate Synthesis and Hydrolysis in Mitochondria. Biochemical Society Transactions, 1977, 5, 1615-1620.	3.4	45
160	The contribution of ATP turnover by the Na+/K+-ATPase to the rate of respiration of hepatocytes. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 976, 241-245.	1.0	45
161	Chapter 23 Measuring Mitochondrial Bioenergetics in INS-1E Insulinoma Cells. Methods in Enzymology, 2009, 457, 405-424.	1.0	44
162	Walking the Oxidative Stress Tightrope: A Perspective from the Naked Mole-Rat, the Longest-Living Rodent. Current Pharmaceutical Design, 2011, 17, 2290-2307.	1.9	44

#	Article	IF	CITATIONS
163	The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biology, 2020, 28, 101341.	9.0	44
164	Compromised Mitochondrial Fatty Acid Synthesis in Transgenic Mice Results in Defective Protein Lipoylation and Energy Disequilibrium. PLoS ONE, 2012, 7, e47196.	2.5	44
165	Hypothyroidism in rats decreases mitochondrial inner membrane cation permeability. FEBS Letters, 1989, 248, 175-178.	2.8	43
166	Control of hepatic mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase during the foetal/neonatal transition, suckling and weaning in the rat. FEBS Journal, 1991, 195, 449-454.	0.2	42
167	Novel Uncoupling Proteins. Novartis Foundation Symposium, 0, , 70-91.	1.1	42
168	Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. FEBS Journal, 1992, 210, 775-784.	0.2	40
169	Dynamic regulation of uncoupling protein 2 content in INS-1E insulinoma cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1378-1383.	1.0	40
170	Control of oxidative phosphorylation in liver mitochondria and hepatocytes. Biochemical Society Transactions, 1993, 21, 757-762.	3.4	39
171	Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Canadian Journal of Physiology and Pharmacology, 1994, 72, 899-908.	1.4	39
172	Quantitative Determination of the Regulation of Oxidative Phosphorylation by Cadmium in Potato Tuber Mitochondria. FEBS Journal, 1994, 225, 923-935.	0.2	38
173	Effects of the mitogen concanavalin A on pathways of thymocyte energy metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 129-138.	1.0	37
174	A Model of the Proton Translocation Mechanism of Complex I. Journal of Biological Chemistry, 2011, 286, 17579-17584.	3.4	37
175	Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochemical Journal, 2006, 395, 619-628.	3.7	36
176	Research on mitochondria and aging, 2006–2007. Aging Cell, 2007, 6, 417-420.	6.7	36
177	Intrinsic metabolic depression in cells isolated from the hepatopancreas of estivating snails. FASEB Journal, 2000, 14, 999-1004.	0.5	35
178	The Effect of Dietary Restriction on Mitochondrial Protein Density and Flight Muscle Mitochondrial Morphology in Drosophila. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 36-47.	3.6	35
179	Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state. FEBS Letters, 2008, 582, 1711-1714.	2.8	35
180	Plasma Membrane Potential Oscillations in Insulin Secreting Ins-1 832/13 Cells Do Not Require Glycolysis and Are Not Initiated by Fluctuations in Mitochondrial Bioenergetics. Journal of Biological Chemistry, 2012, 287, 15706-15717.	3.4	35

#	Article	IF	Citations
181	Stable nuclear expression of <i>ATP8</i> and <i>ATP6</i> genes rescues a mtDNA Complex V <i>null</i> mutant. Nucleic Acids Research, 2016, 44, gkw756.	14.5	35
182	A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis?. Biochimica Et Biophysica Acta - General Subjects, 1993, 1156, 135-143.	2.4	33
183	Stimulation of the electron transport chain in mitochondria isolated from rats treated with mannoheptulose or glucagon. Archives of Biochemistry and Biophysics, 1990, 283, 278-284.	3.0	32
184	Effects of Cadmium on the Control and Internal Regulation of Oxidative Phosphorylation in Potato Tuber Mitochondria. FEBS Journal, 1994, 225, 907-922.	0.2	32
185	Does any yeast mitochondrial carrier have a native uncoupling protein function?. Journal of Bioenergetics and Biomembranes, 2002, 34, 165-176.	2.3	31
186	Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. Journal of Bioenergetics and Biomembranes, 2015, 47, 63-74.	2.3	31
187	ConA induced changes in energy metabolism of rat thymocytes. Bioscience Reports, 1992, 12, 381-386.	2.4	30
188	S1QELs suppress mitochondrial superoxide/hydrogen peroxide production from site IQ without inhibiting reverse electron flow through Complex I. Free Radical Biology and Medicine, 2019, 143, 545-559.	2.9	30
189	Metabolic Downregulation and Inhibition of Carbohydrate Catabolism during Diapause in Embryos of <i>Artemia franciscana </i> . Physiological and Biochemical Zoology, 2013, 86, 106-118.	1.5	29
190	Top-Down Control Analysis of Systems with More than one Common Intermediate. FEBS Journal, 1995, 231, 579-586.	0.2	29
191	Chemical Modification of the Mitochodrial bc1 by N,N' -Dicyclohexylcarbodiimide Inhibits Proton Translocation. FEBS Journal, 1983, 132, 595-601.	0.2	28
192	Effects of methylprednisolone on the energy metabolism of quiescent and conA-stimulated thymocytes of the rat. Bioscience Reports, 1993, 13, 41-52.	2.4	28
193	The Sum of Flux Control Coefficients in the Electron-Transport Chain of Mitochondria. FEBS Journal, 1994, 226, 819-829.	0.2	28
194	The responses of rat hepatocytes to glucagon and adrenaline. FEBS Journal, 2001, 265, 1043-1055.	0.2	28
195	Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies. Biochemical Journal, 2002, 366, 565-571.	3.7	28
196	Cold-induced alterations of phospholipid fatty acyl composition in brown adipose tissue mitochondria are independent of uncoupling protein-1. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1086-R1093.	1.8	27
197	No Consistent Bioenergetic Defects in Presynaptic Nerve Terminals Isolated from Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 16775-16784.	3.6	27
198	Quantifying elasticity analysis: how external effectors cause changes to metabolic systems. BioSystems, 1999, 49, 151-159.	2.0	26

#	Article	IF	Citations
199	Production of superoxide and hydrogen peroxide in the mitochondrial matrix is dominated by site IQ of complex I in diverse cell lines. Redox Biology, 2020, 37, 101722.	9.0	26
200	Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes. FEBS Letters, 1982, 150, 122-124.	2.8	25
201	The choline transporter is the major site of control of choline oxidation in isolated rat liver mitochondria. FEBS Letters, 1993, 321, 24-26.	2.8	25
202	Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells. PLoS ONE, 2016, 11, e0159199.	2.5	24
203	A quantitative assessment of the use of 36Clâ [^] distribution to measure plasma membrane potential in isolated hepatocytes. Biochimica Et Biophysica Acta - Biomembranes, 1989, 987, 115-123.	2.6	23
204	Errors Associated with Metabolic Control Analysis. Application of Monte-Carlo Simulation of Experimental Data. Journal of Theoretical Biology, 1998, 194, 223-233.	1.7	23
205	Therapeutically targeting lymphocyte energy metabolism by high-dose glucocorticoids. Biochemical Pharmacology, 2000, 59, 597-603.	4.4	23
206	Quantitation of signal transduction. FASEB Journal, 2000, 14, 2581-2588.	0.5	23
207	Expression of human uncoupling protein-3 in Drosophila insulin-producing cells increases insulin-like peptide (DILP) levels and shortens lifespan. Experimental Gerontology, 2009, 44, 316-327.	2.8	23
208	A Prototypical Smallâ€Molecule Modulator Uncouples Mitochondria in Response to Endogenous Hydrogen Peroxide Production. ChemBioChem, 2013, 14, 993-1000.	2.6	23
209	Special issue on dietary restriction: Dietary restriction, longevity and ageingâ€"the current state of our knowledge and ignorance. Mechanisms of Ageing and Development, 2005, 126, 911-912.	4.6	22
210	Mitochondrial uncoupling protein 2 in pancreatic <i>β</i> â€cells. Diabetes, Obesity and Metabolism, 2010, 12, 134-140.	4.4	22
211	Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells. Oncotarget, 2015, 6, 40036-40052.	1.8	22
212	Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle. Frontiers in Physiology, 2017, 8, 704.	2.8	21
213	Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biological Chemistry, 2018, 399, 407-420.	2.5	21
214	Use of S1QELs and S3QELs to link mitochondrial sites of superoxide and hydrogen peroxide generation to physiological and pathological outcomes. Biochemical Society Transactions, 2019, 47, 1461-1469.	3.4	21
215	Novel uncoupling proteins. Novartis Foundation Symposium, 2007, 287, 70-80; discussion 80-91.	1.1	19
216	Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. Molecular and Cellular Biochemistry, 1996, 158, 133-8.	3.1	17

#	Article	lF	CITATIONS
217	Changes in the Hepatic Mitochondrial Respiratory System in the Transition from Weaning to Adulthood in Rats. Archives of Biochemistry and Biophysics, 1998, 352, 240-246.	3.0	17
218	Dysregulation of glucose homeostasis in nicotinamide nucleotide transhydrogenase knockout mice is independent of uncoupling protein 2. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1451-1457.	1.0	17
219	Caged mitochondrial uncouplers that are released in response to hydrogen peroxide. Tetrahedron, 2010, 66, 2384-2389.	1.9	17
220	Characterization of betaine efflux from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1141, 269-274.	1.0	15
221	Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1054-1065.	3 . 8	15
222	The effect of chloroform on mitochondrial energy transduction. Biochemical Journal, 1996, 320, 837-845.	3.7	14
223	Control analysis of systems with reaction blocks that â€~cross-talk'. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1366, 284-290.	1.0	14
224	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307.	3.7	14
225	Structure and Function of Mitochondria in Hepatopancreas Cells from Metabolically Depressed Snails. Physiological and Biochemical Zoology, 2002, 75, 134-144.	1.5	14
226	Characteristics of the turnover of uncoupling protein 3 by the ubiquitin proteasome system in isolated mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1474-1481.	1.0	14
227	Cardiolipin deficiency in Barth syndrome is not associated with increasedÂsuperoxide/H 2 O 2 production in heart and skeletal muscle mitochondria. FEBS Letters, 2021, 595, 415-432.	2.8	14
228	Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radical Biology and Medicine, 2021, 164, 223-232.	2.9	14
229	Control of acetoacetate production from exogenous palmitoyl-CoA in isolated rat liver mitochondria. Biochemical Society Transactions, 1989, 17, 1089-1090.	3.4	13
230	Effects of magnesium and nucleotides on the proton conductance of rat skeletal-muscle mitochondria. Biochemical Journal, 2000, 348, 209.	3.7	13
231	Stoicheiometry of Charge and Proton Translocation in Mitochondria: Steady-State Measurement of Charge/O and P/O Ratios. Biochemical Society Transactions, 1979, 7, 874-880.	3.4	12
232	Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells., 1998,, 13-20.		12
233	[70] Determination of the H+/site and Ca2+/site ratios of mitochondrial electron transport. Methods in Enzymology, 1979, 55, 640-656.	1.0	11
234	Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1. Bioscience Reports, 2010, 30, 187-192.	2.4	11

#	Article	IF	Citations
235	Mechanism of the stimulation of respiration by added substrate in hepatocytes. Biochemical Society Transactions, 1986, 14, 1200-1201.	3.4	10
236	Top-Down Control Analysis of Systems with More than one Common Intermediate. FEBS Journal, 1995, 231, 579-586.	0.2	10
237	Molecular properties of purified human uncoupling protein 2 refolded from bacterial inclusion bodies. Journal of Bioenergetics and Biomembranes, 2003, 35, 409-418.	2.3	10
238	Mechanisms of Mitochondrial Free Radical Production and their Relationship to the Aging Process. , 2011, , 47-61.		10
239	Mitochondrial Proton Conductance, Standard Metabolic Rate and Metabolic Depression., 2000,, 413-430.		10
240	Controlled power: how biology manages succinate-driven energy release. Biochemical Society Transactions, 2021, 49, 2929-2939.	3.4	10
241	Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radical Biology and Medicine, 2022, 188, 92-102.	2.9	10
242	Size changes of phosphodiesterase in bovine rod outer segments on illumination. Biochemistry, 1983, 22, 1704-1708.	2.5	9
243	The mechanism of Ca2+ stimulation of citrulline and N-acetylglutamate synthesis by mitochondria. Biochimica Et Biophysica Acta - General Subjects, 1990, 1033, 85-90.	2.4	9
244	The mechanism of stimulation of respiration in isolated hepatocytes from rats fed an energy-dense diet. Journal of Nutritional Biochemistry, 1996, 7, 571-576.	4.2	9
245	Apoptosis and the laws of thermodynamics. Nature Cell Biology, 2000, 2, E172-E172.	10.3	9
246	Approximate yield of ATP from glucose, designed by donald nicholson: Commentary. Biochemistry and Molecular Biology Education, 2003, 31, 2-4.	1.2	9
247	Exploiting Mitochondria InÂVivo as Chemical Reaction Chambers Dependent on Membrane Potential. Molecular Cell, 2016, 61, 642-643.	9.7	9
248	S3QELs protect against dietâ€induced intestinal barrier dysfunction. Aging Cell, 2021, 20, e13476.	6.7	9
249	Measurement of Proton Leak in Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 157-170.	0.9	8
250	The H+/site ratio of mitochondrial electron transport. Journal of Cellular Physiology, 1976, 89, 595-602.	4.1	7
251	Measurement of the intramitochondrial PO ratio. Biochemical and Biophysical Research Communications, 1979, 91, 592-598.	2.1	7
252	Substrate dependence of the relationship between membrane potential and respiration rate in mitochondria. Biochemical Society Transactions, 1986, 14, 1042-1043.	3.4	7

#	Article	IF	Citations
253	Apparent variation in mitochondrial $H+/2e$ caused by $Mg2+$. Biochemical Society Transactions, 1985, 13, 695-696.	3.4	6
254	3-Hydroxy-3-methylglutaryl coenzyme A synthase activity in rat liver increases with increased ketogenesis. Biochemical Society Transactions, 1987, 15, 1068-1069.	3.4	6
255	Choline transport into rat liver mitochondria. Biochemical Society Transactions, 1992, 20, 248S-248S.	3.4	6
256	The Whys and Hows of Calculating Total Cellular ATP Production Rate. Trends in Endocrinology and Metabolism, 2019, 30, 412-416.	7.1	6
257	Simplifying metabolic complexity. Biochemical Society Transactions, 2001, 30, 25.	3.4	6
258	The control of electron flux through cytochrome oxidase. Biochemical Society Transactions, 1986, 14, 887-888.	3.4	5
259	Glucagon increases mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase activity <i>in vivo</i> by desuccinylating the enzyme. Biochemical Society Transactions, 1989, 17, 147-148.	3.4	5
260	Analysing microarray data using modular regulation analysis. Bioinformatics, 2004, 20, 1272-1284.	4.1	5
261	Plate-Based Measurement of Respiration by Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 301-313.	0.9	5
262	A New Steady-State Method for Investigating Mitochondrial Proton Transport. Biochemical Society Transactions, 1979, 7, 221-223.	3.4	4
263	Rhodopsin in the disc membrane is a monomer. Biochemical Society Transactions, 1983, 11, 691-692.	3.4	4
264	Target size analysis of rhodopsin in retinal rod disk membranes. Biochemical and Biophysical Research Communications, 1984, 122, 56-61.	2.1	4
265	Control analysis of DNA microarray expression data. Molecular Biology Reports, 2002, 29, 67-71.	2.3	4
266	Plate-Based Measurement of Superoxide and Hydrogen Peroxide Production by Isolated Mitochondria. Methods in Molecular Biology, 2018, 1782, 287-299.	0.9	4
267	Light changes the membrane potential and ion balances of retinal rod disks. FEBS Letters, 1985, 182, 380-384.	2.8	3
268	Some properties of rat liver mitochondria with low Ca2+ content. Biochemical Society Transactions, 1986, 14, 1182-1182.	3.4	3
269	Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of Cell Science, 2010, 123, 3616-3616.	2.0	3
270	Measuring Mitochondrial Uncoupling Protein-2 Level and Activity in Insulinoma Cells. Methods in Enzymology, 2013, 528, 257-267.	1.0	3

#	Article	IF	CITATIONS
271	Pathways of Ca2+ efflux from liver and heart mitochondria. Biochemical Society Transactions, 1985, 13, 688-689.	3.4	2
272	Stimulation of 3-hydroxy-3-methylglutaryl coenzyme A synthase activity in rat liver mitochondria isolated from glucagon-treated rats. Biochemical Society Transactions, 1987, 15, 1133-1134.	3.4	2
273	Mannoheptulose and glucagon treatment of fed rats stimulates 3-hydroxy-3-methylglutaryl-CoA synthase activity in rat liver mitochondria by desuccinylation of the enzyme. Biochemical Society Transactions, 1988, 16, 633-634.	3.4	2
274	The nature of betaine efflux from rat liver mitochondria. Biochemical Society Transactions, 1992, 20, 247S-247S.	3.4	2
275	Simplifying metabolic complexity. Biochemical Society Transactions, 2002, 30, A5-A5.	3.4	1
276	Control Analysis of Metabolic Depression. Cell and Molecular Response To Stress, 2002, , 283-296.	0.4	1
277	Tunicamycin Exposure Triggers Apopotosis by Superoxide Formation from Site III Qo of Mitochondrial Complex III. Free Radical Biology and Medicine, 2017, 112, 172.	2.9	1
278	Inhibition of Mitochondria 1 Pyruvate Transport by Phenylpyruvate and $\hat{l}\pm$ -Oxo-4-methylpentanoate. Biochemical Society Transactions, 1974, 2, 980-982.	3.4	0
279	CALCIUM EFFLUX FROM ISOLATED LIVER MITOCHONDRIA FOLLOWING OXIDATION OF ENDOGENOUS NUCLEOTIDES. Biochemical Society Transactions, 1981, 9, 135P-135P.	3.4	0
280	Respiratory control in the mitochondrial $\langle i \rangle bc \langle i \rangle 1$ complex. Biochemical Society Transactions, 1985, 13, 693-693.	3 . 4	0
281	A HIERARCHY OF ATP-CONSUMING PROCESSES. Biochemical Society Transactions, 1996, 24, 519S-519S.	3.4	0
282	Control analysis of gene expression. Biochemical Society Transactions, 2002, 30, A8-A8.	3.4	0
283	Control analysis of gene expression. Biochemical Society Transactions, 2002, 30, A32-A32.	3.4	0
284	25.1. Mitochondria and Reactive Oxygen Species. Comparative Biochemistry and Physiology Part A, Molecular & Damp; Integrative Physiology, 2007, 148, S112.	1.8	0
285	S3.10 A role for uncoupling protein 1 in the formation of the mitochondrial permeability transition pore?. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S27.	1.0	0
286	S12.9 Dynamic regulation of UCP2 concentration in INS-1E pancreatic beta-cells. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S77.	1.0	0
287	The regulation and turnover of mitochondrial uncoupling proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 84.	1.0	0
288	Are the novel uncoupling proteins acutely regulated by fatty acids and nucleotides?. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 86.	1.0	0

#	Article	IF	CITATIONS
289	A Refined Analysis of ROS Production from Mitochondrial sn-Glycerol-3-Phosphate Dehydrogenase (mGPDH). Free Radical Biology and Medicine, 2011, 51, S137-S138.	2.9	0
290	Sites of Mitochondrial ROS Production during Long-Chain Fatty Acid Oxidation. Free Radical Biology and Medicine, 2011, 51, S138.	2.9	0
291	Native Rates of Mitochondrial Superoxide Production: A Novel Method Utilizing Endogenous Reporters. Free Radical Biology and Medicine, 2012, 53, S27.	2.9	0
292	Regulation of Energy Metabolism in Hepatocytes. , 2000, , 131-138.		0
293	Abstract 3797: Wildtype p53 upregulation induces contrasting bioenergetic and metabolic responses in malignant and non-malignant mammary epithelial cells. , 2011 , , .		0
294	Time Lapse Measurement of Mitochondrial Membrane Potential in Absolute Millivolts in Single Intact Cells. FASEB Journal, 2012, 26, 887.11.	0.5	0
295	Mechanisms of the Effects of Hypothyroidism and Hyperthyroidism in Rats on Respiration Rate in Isolated Hepatocytes., 1993,, 351-356.		0