Alan Howling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9296539/publications.pdf

Version: 2024-02-01

107 3,168
papers citations

117625 34 h-index

1439 citing authors

53

g-index

108 all docs 108 docs citations 108 times ranked

#	Article	IF	Citations
1	Entering the plasma agriculture field: An attempt to standardize protocols for plasma treatment of seeds. Plasma Processes and Polymers, 2022, 19, e2100152.	3.0	17
2	RNA Sequencing of Arabidopsis thaliana Seedlings after Non-Thermal Plasma-Seed Treatment Reveals Upregulation in Plant Stress and Defense Pathways. International Journal of Molecular Sciences, 2022, 23, 3070.	4.1	6
3	A 1.5D fluidâ€"Monte Carlo model of a hydrogen helicon plasma. Plasma Physics and Controlled Fusion, 2022, 64, 055012.	2.1	2
4	Mechanisms of Plasma-Seed Treatments as a Potential Seed Processing Technology. Frontiers in Physics, $2021, 9, .$	2.1	53
5	Advantages and Limitations of Surface Analysis Techniques on Plasma-Treated Arabidopsis thaliana Seeds. Frontiers in Materials, 2021, 8, .	2.4	9
6	Negative hydrogen ion dynamics inside the plasma volume of a linear device: Estimates from particle-in-cell calculations. Physics of Plasmas, 2021, 28, 063503.	1.9	4
7	Helicon wave plasma generated by a resonant birdcage antenna: magnetic field measurements and analysis in the RAID linear device. Plasma Sources Science and Technology, 2021, 30, 075023.	3.1	13
8	Latest experimental and theoretical advances in the production of negative ions in caesium-free plasmas. European Physical Journal D, 2021, 75, 1.	1.3	15
9	Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch. Physical Review Accelerators and Beams, 2021, 24, .	1.6	3
10	An In Situ FTIR Study of DBD Plasma Parameters for Accelerated Germination of Arabidopsis thaliana Seeds. International Journal of Molecular Sciences, 2021, 22, 11540.	4.1	14
11	Negative ion characterization in a helicon plasma source for fusion neutral beams by cavity ring-down spectroscopy and Langmuir probe laser photodetachment. Nuclear Fusion, 2020, 60, 026007.	3.5	14
12	Slip Ring Test Assembly With Increased Breakdown Voltage Limit for High-Voltage Bus Satellites. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 32-36.	1.3	3
13	Cold Atmospheric Plasma Inactivation of Microbial Spores Compared on Reference Surfaces and Powder Particles. Food and Bioprocess Technology, 2020, 13, 827-837.	4.7	21
14	Application of Thomson scattering to helicon plasma sources. Journal of Plasma Physics, 2020, 86, .	2.1	8
15	Experimental study of wakefields driven by a self-modulating proton bunch in plasma. Physical Review Accelerators and Beams, 2020, 23, .	1.6	8
16	Proton Bunch Self-Modulation in Plasma with Density Gradient. Physical Review Letters, 2020, 125, 264801.	7.8	5
17	Development of a plasma electroacoustic actuator for active noise control applications. Journal Physics D: Applied Physics, 2020, 53, 495202.	2.8	5
18	Multiple dehydrogenation reactions of negative ions in low pressure silane plasma chemistry. Plasma Sources Science and Technology, 2020, 29, 105015.	3.1	0

#	Article	IF	CITATIONS
19	Magnetic field configurational study on a helicon-based plasma source for future neutral beam systems. Plasma Sources Science and Technology, 2019, 28, 095005.	3.1	1
20	Gas breakdown mitigation in satellite slip rings. Aerospace Science and Technology, 2019, 85, 229-233.	4.8	2
21	Two-fluid plasma model for radial Langmuir probes as a converging nozzle with sonic choked flow, and sonic passage to supersonic flow. Physics of Plasmas, 2019, 26, 044502.	1.9	4
22	First B-dot measurements in the RAID device, an alternative negative ion source for DEMO neutral beams. Fusion Engineering and Design, 2019, 146, 1140-1144.	1.9	13
23	RF bias to suppress post-oxidation of $\hat{l}\frac{1}{4}$ c-Si:H films deposited by inductively-coupled plasma using a planar RF resonant antenna. Vacuum, 2018, 147, 58-64.	3.5	1
24	Two-fluid solutions for Langmuir probes in collisionless and isothermal plasma, over all space and bias potential. Physics of Plasmas, 2018, 25, 093519.	1.9	4
25	Cavity ring-down spectroscopy to measure negative ion density in a helicon plasma source for fusion neutral beams. Review of Scientific Instruments, 2018, 89, 103504.	1.3	16
26	Spectroscopic characterization of H ₂ and D ₂ helicon plasmas generated by a resonant antenna for neutral beam applications in fusion. Nuclear Fusion, 2017, 57, 036024.	3.5	27
27	Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source. Plasma Sources Science and Technology, 2017, 26, 035010.	3.1	4
28	Ion heating and flows in a high power helicon source. Physics of Plasmas, 2017, 24, 063517.	1.9	10
29	Helicon wave-generated plasmas for negative ion beams for fusion. EPJ Web of Conferences, 2017, 157, 03014.	0.3	27
30	Negative ion source development for a photoneutralization based neutral beam system for future fusion reactors. New Journal of Physics, 2016, 18, 125005.	2.9	39
31	Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part I: basic concepts. Plasma Sources Science and Technology, 2015, 24, 065014.	3.1	7
32	Complex image method for RF antenna-plasma inductive coupling calculation in planar geometry. Part II: measurements on a resonant network. Plasma Sources Science and Technology, 2015, 24, 065015.	3.1	5
33	R&D around a photoneutralizer-based NBI system (Siphore) in view of a DEMO Tokamak steady state fusion reactor. Nuclear Fusion, 2015, 55, 123020.	3.5	50
34	Industrial plasmas in academia. Plasma Physics and Controlled Fusion, 2015, 57, 014010.	2.1	6
35	Analysis of resonant planar dissipative network antennas for rf inductively coupled plasma sources. Plasma Sources Science and Technology, 2014, 23, 015006.	3.1	11
36	Direct current breakdown in gases for complex geometries from high vacuum to atmospheric pressure. Journal Physics D: Applied Physics, 2013, 46, 285205.	2.8	31

3

#	Article	IF	Citations
37	Resonant RF network antennas for large-area and large-volume inductively coupled plasma sources. Plasma Sources Science and Technology, 2013, 22, 055021.	3.1	21
38	Funnelling of rf current via a plasmoid through a grid hole in an rf capacitive plasma reactor. Plasma Sources Science and Technology, 2013, 22, 055006.	3.1	5
39	Generation of Whistler-Wave Heated Discharges with Planar Resonant rf Networks. Physical Review Letters, 2013, 111, 125005.	7.8	7
40	Low ion energy RF reactor using an array of plasmas through a grounded grid. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	6
41	Plasma generation by inductive coupling with a planar resonant RF network antenna. Journal Physics D: Applied Physics, 2012, 45, 409502.	2.8	4
42	Plasma deposition in an ideal showerhead reactor: a two-dimensional analytical solution. Plasma Sources Science and Technology, 2012, 21, 015005.	3.1	21
43	Plasma generation by inductive coupling with a planar resonant RF network antenna. Journal Physics D: Applied Physics, 2012, 45, 082001.	2.8	11
44	Resonant planar antenna as an inductive plasma source. Journal of Applied Physics, 2012, 111, 083305.	2.5	9
45	Input silane concentration effect on the a-Si:H to \hat{l} /4c-Si:H transition width. Solar Energy Materials and Solar Cells, 2010, 94, 432-435.	6.2	6
46	Radio frequency breakdown between structured parallel plate electrodes with a millimetric gap in low pressure gases. Physics of Plasmas, 2010, 17, 102111.	1.9	5
47	RF breakdown in low pressure gases in small (millimetric) gaps with non-planar surfaces. , 2010, , .		0
48	Hydrogen-dominated plasma, due to silane depletion, for microcrystalline silicon deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 989-995.	2.1	6
49	Study of the microstructure transition width from amorphous to microcrystalline silicon as a function of the input silane concentration. , 2009, , .		0
50	Non-intrusive plasma diagnostics for the deposition of large area thin film silicon. Thin Solid Films, 2009, 517, 6218-6224.	1.8	16
51	Uniformity of silicon microcrystallinity in large area RF capacitive reactors. Progress in Photovoltaics: Research and Applications, 2008, 16, 687-691.	8.1	8
52	Optimization of the microcrystalline silicon deposition efficiency. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1198-1202.	2.1	20
53	Plasma diagnostics as a tool for process optimization: the case of microcrystalline silicon deposition. Plasma Physics and Controlled Fusion, 2007, 49, B411-B418.	2.1	8
54	Fast equilibration of silane/hydrogen plasmas in large area RF capacitive reactors monitored by optical emission spectroscopy. Plasma Sources Science and Technology, 2007, 16, 679-696.	3.1	40

#	Article	IF	Citations
55	Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2discharges. Plasma Sources Science and Technology, 2007, 16, 80-89.	3.1	111
56	Microcrystalline silicon deposited at high rate on large areas from pure silane with efficient gas utilization. Solar Energy Materials and Solar Cells, 2007, 91, 495-502.	6.2	35
57	Electromagnetic sources of nonuniformity in large area capacitive reactors. Thin Solid Films, 2007, 515, 5059-5064.	1.8	12
58	Electromagnetic field nonuniformities in large area, high-frequency capacitive plasma reactors, including electrode asymmetry effects. Plasma Sources Science and Technology, 2006, 15, 302-313.	3.1	82
59	Application of the shaped electrode technique to a large area rectangular capacitively coupled plasma reactor to suppress standing wave nonuniformity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1425-1430.	2.1	25
60	Comment on "lon energy uniformity in high-frequency capacitive discharges―[Appl. Phys. Lett. 86, 021501 (2005)]. Applied Physics Letters, 2005, 87, 076101.	3.3	14
61	Probe measurements of plasma potential nonuniformity due to edge asymmetry in large-area radio-frequency reactors: The telegraph effect. Journal of Applied Physics, 2005, 97, 123308.	2.5	27
62	Measurements and consequences of nonuniform radio frequency plasma potential due to surface asymmetry in large area radio frequency capacitive reactors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 922-926.	2.1	9
63	Improving plasma uniformity using lens-shaped electrodes in a large area very high frequency reactor. Journal of Applied Physics, 2004, 95, 4559-4564.	2.5	123
64	Nonuniform radio-frequency plasma potential due to edge asymmetry in large-area radio-frequency reactors. Journal of Applied Physics, 2004, 96, 5429-5440.	2.5	51
65	High-efficiency p-i-n a-Si:H solar cells with low boron cross-contamination prepared in a large-area single-chamber PECVD reactor. Thin Solid Films, 2004, 451-452, 525-530.	1.8	45
66	Reduction of the boron cross-contamination for plasma deposition of p–i–n devices in a single-chamber large area radio-frequency reactor. Thin Solid Films, 2004, 468, 222-225.	1.8	17
67	Anion reactions in silane plasma. Journal of Applied Physics, 2002, 91, 5571-5580.	2.5	45
68	Rapid deposition of hydrogenated microcrystalline silicon by a high current DC discharge. Thin Solid Films, 2001, 383, 11-14.	1.8	3
69	Power laws for the spatial dependence of electrical parameters in the high-voltage capacitive RF sheath. IEEE Transactions on Plasma Science, 2000, 28, 1713-1719.	1.3	0
70	A gas flow uniformity study in large-area showerhead reactors for RF plasma deposition. Plasma Sources Science and Technology, 2000, 9, 205-209.	3.1	35
71	The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells. Plasma Physics and Controlled Fusion, 2000, 42, B353-B363.	2.1	71
72	On the powder formation in industrial reactive RF plasmas. , 2000, , 169-176.		4

#	Article	IF	Citations
73	Applications of the cavity ring-down technique to a large-area rf-plasma reactor. Plasma Sources Science and Technology, 1999, 8, 448-456.	3.1	47
74	Fast Deposition of a-Si:H Layers and Solar Cells in a Large-Area (40×40 cm ²) VHF-GD Reactor. Materials Research Society Symposia Proceedings, 1999, 557, 121.	0.1	18
75	Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas. Plasma Sources Science and Technology, 1998, 7, 114-118.	3.1	41
76	Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry. Journal Physics D: Applied Physics, 1998, 31, 74-84.	2.8	48
77	Large Area Deposition of Amorphous and Microcrystalline Silicon by Very High Frequency Plasma. Materials Research Society Symposia Proceedings, 1998, 507, 541.	0.1	11
78	Dust Particle Diagnostics in Rf Plasma Deposition of Silicon and Silicon Oxide Films (Invited). Materials Research Society Symposia Proceedings, 1998, 507, 547.	0.1	21
79	Gas Phase and Particle Diagnostic of Hmdso Plasmas by Infrared Absorption Spectroscopy. Materials Research Society Symposia Proceedings, 1998, 544, 65.	0.1	2
80	A voltage uniformity study in large-area reactors for RF plasma deposition. Plasma Sources Science and Technology, 1997, 6, 170-178.	3.1	98
81	Global visualization of powder trapping in capacitive RF plasmas by two-dimensional laser scattering. IEEE Transactions on Plasma Science, 1996, 24, 101-102.	1.3	10
82	Particle agglomeration study in rf silane plasmas:Insitustudy by polarizationâ€sensitive laser light scattering. Journal of Applied Physics, 1996, 80, 2069-2078.	2.5	92
83	From molecules to particles in silane plasmas. Pure and Applied Chemistry, 1996, 68, 1017-1022.	1.9	40
84	Sheath impedance effects in very high frequency plasma experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 132-138.	2.1	64
85	Anionic clusters in dusty hydrocarbon and silane plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 535-539.	2.1	75
86	Partial-depth modulation study of anions and neutrals in low-pressure silane plasmas. Plasma Sources Science and Technology, 1996, 5, 210-215.	3.1	40
87	Spatiotemporal powder formation and trapping in radio frequency silane plasmas using twoâ€dimensional polarizationâ€sensitive laser scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 918-926.	2.1	60
88	Visible photoluminescence from hydrogenated silicon particles suspended in a silane plasma. Journal of Applied Physics, 1995, 78, 61-66.	2.5	29
89	Reconstruction of the time-averaged sheath potential profile in an argon radiofrequency plasma using the ion energy distribution. Plasma Sources Science and Technology, 1995, 4, 373-378.	3.1	16
90	Diagnostics of particle genesis and growth in RF silane plasmas by ion mass spectrometry and light scattering. Plasma Sources Science and Technology, 1994, 3, 278-285.	3.1	119

#	Article	IF	Citations
91	Timeâ€resolved measurements of highly polymerized negative ions in radio frequency silane plasma deposition experiments. Journal of Applied Physics, 1994, 75, 1340-1353.	2.5	155
92	The role of metastable atoms in argon-diluted silane radiofrequency plasmas. Journal Physics D: Applied Physics, 1994, 27, 1406-1411.	2.8	50
93	Influence of higher deposition temperature on a-Si:H material properties, powder formation and light-induced degradation, using the VHF (70 MHz) glow discharge technique. Journal of Non-Crystalline Solids, 1993, 164-166, 59-62.	3.1	9
94	Negative hydrogenated silicon ion clusters as particle precursors in RF silane plasma deposition experiments. Journal Physics D: Applied Physics, 1993, 26, 1003-1006.	2.8	106
95	Negative ion mass spectra and particulate formation in radio frequency silane plasma deposition experiments. Applied Physics Letters, 1993, 62, 1341-1343.	3.3	115
96	Dependence of intrinsic stress in hydrogenated amorphous silicon on excitation frequency in a plasmaâ€enhanced chemical vapor deposition process. Journal of Applied Physics, 1992, 72, 3220-3222.	2.5	53
97	Frequency effects in silane plasmas for plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1080-1085.	2.1	157
98	VHF Plasma Deposition: A Comparative Overview. Materials Research Society Symposia Proceedings, 1992, 258, 15.	0.1	45
99	Microstructure, Optoelectronic Properties and Saturated Defect Density of A-SL:H Prepared in VHF-Glow Discharge Using AR and XE Dilution. Materials Research Society Symposia Proceedings, 1992, 258, 135.	0.1	10
100	Influences of a high excitation frequency (70 MHz) in the glow discharge technique on the process plasma and the properties of hydrogenated amorphous silicon. Journal of Applied Physics, 1992, 71, 5665-5674.	2.5	100
101	Powder dynamics in very high frequency silane plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1048-1052.	2.1	55
102	Highly Conductive Microcrystalline Silicon Layers for Tunnel Junctions in Stacked Amorphous Silicon based Solar Cells Materials Research Society Symposia Proceedings, 1991, 219, 469.	0.1	19
103	Direct visual observation of powder dynamics in rf plasmaâ€assisted deposition. Applied Physics Letters, 1991, 59, 1409-1411.	3.3	71
104	Coherent mode activity in the edge of TOSCA Tokamak. Plasma Physics and Controlled Fusion, 1988, 30, 1863-1877.	2,1	14
105	The effect of Lower Hybrid Current Drive on the discrete Alfven wave spectrum. Plasma Physics and Controlled Fusion, 1987, 29, 1631-1636.	2.1	1
106	Central mass and current density measurements in Tokamaks using the discrete Alfven wave spectrum. Plasma Physics and Controlled Fusion, 1987, 29, 323-339.	2.1	16
107	Radio frequency inductively coupled discharges in thermal plasmas. , 0, , .		1