
Vivi M Heine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9296033/publications.pdf Version: 2024-02-01

VIVI M HEINE

#	Article	IF	CITATIONS
1	InÂvivo targeting of a variant causing vanishing white matter using CRISPR/Cas9. Molecular Therapy - Methods and Clinical Development, 2022, 25, 17-25.	4.1	2
2	Evolution of adrenoleukodystrophy model systems. Journal of Inherited Metabolic Disease, 2021, 44, 544-553.	3.6	5
3	Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Research, 2021, 56, 102512.	0.7	8
4	Neuron–Clia Interactions in Tuberous Sclerosis Complex Affect the Synaptic Balance in 2D and Organoid Cultures. Cells, 2021, 10, 134.	4.1	13
5	A human iPSC-astroglia neurodevelopmental model reveals divergent transcriptomic patterns in schizophrenia. Translational Psychiatry, 2021, 11, 554.	4.8	19
6	Glutamate Carrier Involvement in Mitochondrial Dysfunctioning in the Brain White Matter. Frontiers in Molecular Biosciences, 2020, 7, 151.	3.5	7
7	Pharmacological intervention to restore connectivity deficits of neuronal networks derived from ASD patient iPSC with a TSC2 mutation. Molecular Autism, 2020, 11, 80.	4.9	25
8	Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proceedings of the United States of America, 2020, 117, 23617-23625.	7.1	36
9	Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors. Molecular Autism, 2020, 11, 38.	4.9	14
10	Cerebral Organoids: A Human Model for AAV Capsid Selection and Therapeutic Transgene Efficacy in the Brain. Molecular Therapy - Methods and Clinical Development, 2020, 18, 167-175.	4.1	22
11	Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Molecular Autism, 2020, 11, 42.	4.9	14
12	Astrocyte Subtype Vulnerability in Stem Cell Models of Vanishing White Matter. Annals of Neurology, 2019, 86, 780-792.	5.3	20
13	The involvement of astrocytes in earlyâ€life adversity induced programming of the brain. Glia, 2019, 67, 1637-1653.	4.9	66
14	Cell Replacement Therapy Improves Pathological Hallmarks in a Mouse Model of Leukodystrophy Vanishing White Matter. Stem Cell Reports, 2019, 12, 441-450.	4.8	15
15	KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients. Acta Neuropathologica Communications, 2019, 7, 196.	5.2	33
16	Neuron-Glia Interactions Increase Neuronal Phenotypes in Tuberous Sclerosis Complex Patient iPSC-Derived Models. Stem Cell Reports, 2019, 12, 42-56.	4.8	62
17	Generation of Isogenic Controls for In Vitro Disease Modelling of X-Chromosomal Disorders. Stem Cell Reviews and Reports, 2019, 15, 276-285.	5.6	16
18	Co-culture of Human Stem Cell Derived Neurons and Oligodendrocyte Progenitor Cells. Bio-protocol, 2019, 9, e3350.	0.4	5

VIVI Μ HEINE

#	Article	IF	CITATIONS
19	Adult mouse eIF2Bε Arg191His astrocytes display a normal integrated stress response in vitro. Scientific Reports, 2018, 8, 3773.	3.3	9
20	<scp>A</scp> ffected astrocytes in the spinal cord of the leukodystrophy vanishing white matter. Glia, 2018, 66, 862-873.	4.9	19
21	Axonal abnormalities in vanishing white matter. Annals of Clinical and Translational Neurology, 2018, 5, 429-444.	3.7	19
22	Bergmann glia translocation: a new disease marker for vanishing white matter identifies therapeutic effects of Guanabenz treatment. Neuropathology and Applied Neurobiology, 2018, 44, 391-403.	3.2	39
23	The Healthy and Diseased Microenvironments Regulate Oligodendrocyte Properties. American Journal of Pathology, 2018, 188, 39-52.	3.8	9
24	Patterning factors during neural progenitor induction determine regional identity and differentiation potential in vitro. Stem Cell Research, 2018, 32, 25-34.	0.7	28
25	<i>Olig1</i> is required for nogginâ€induced neonatal myelin repair. Annals of Neurology, 2017, 81, 560-571.	5.3	13
26	Simplified 3D protocol capable of generating early cortical neuroepithelium. Biology Open, 2017, 6, 402-406.	1.2	5
27	Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons. Stem Cell Reports, 2017, 8, 659-672.	4.8	9
28	Stem Cell Derived Retinal Pigment Epithelium: The Role of Pigmentation as Maturation Marker and Gene Expression Profile Comparison with Human Endogenous Retinal Pigment Epithelium Stem Cell Reviews and Reports, 2017, 13, 659-669.	5.6	26
29	Streamlined 3D Cerebellar Differentiation Protocol with Optional 2D Modification. Journal of Visualized Experiments, 2017, , .	0.3	8
30	Genetically-Informed Patient Selection for iPSC Studies of Complex Diseases May Aid in Reducing Cellular Heterogeneity. Frontiers in Cellular Neuroscience, 2017, 11, 164.	3.7	37
31	Cerebellar Development—The Impact of Preterm Birth and Comorbidities. , 2017, , 1350-1362.e3.		1
32	Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS ONE, 2017, 12, e0178533.	2.5	28
33	Comparative gene expression study and pathway analysis of the human iris- and the retinal pigment epithelium. PLoS ONE, 2017, 12, e0182983.	2.5	9
34	Stem cell therapy for white matter disorders: don't forget the microenvironment!. Journal of Inherited Metabolic Disease, 2016, 39, 513-518.	3.6	9
35	Leukodystrophies. Neurology: Clinical Practice, 2016, 6, 506-514.	1.6	18
36	Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Molecular Psychiatry, 2016, 21, 1167-1179.	7.9	92

VIVI Μ HEINE

#	Article	IF	CITATIONS
37	Detection of silent cells, synchronization and modulatory activity in developing cellular networks. Developmental Neurobiology, 2016, 76, 357-374.	3.0	21
38	Astrocytes are central in the pathomechanisms of vanishing white matter. Journal of Clinical Investigation, 2016, 126, 1512-1524.	8.2	113
39	Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS ONE, 2015, 10, e0141597.	2.5	47
40	Mice with megalencephalic leukoencephalopathy with cysts: A developmental angle. Annals of Neurology, 2015, 77, 114-131.	5.3	57
41	Human ciliary epithelia do express genes with retinal progenitor cell characteristics inÂvivo. Experimental Eye Research, 2014, 121, 41.	2.6	0
42	Olig1 Function Is Required to Repress Dlx1/2 and Interneuron Production in Mammalian Brain. Neuron, 2014, 81, 574-587.	8.1	63
43	Astrocyte-forebrain co-cultures: an in vitro model for studying the role of astrocytes in childhood white matter disorders. Tijdschrift Voor Kindergeneeskunde, 2013, 81, 66-66.	0.0	0
44	Cerebellar abnormalities following hypoxia alone compared to hypoxic–ischemic forebrain injury in the developing rat brain. Neurobiology of Disease, 2011, 41, 138-146.	4.4	36
45	A Small-Molecule Smoothened Agonist Prevents Glucocorticoid-Induced Neonatal Cerebellar Injury. Science Translational Medicine, 2011, 3, 105ra104.	12.4	67
46	Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466, 253-257.	27.8	1,568
47	Dexamethasone Destabilizes Nmyc to Inhibit the Growth of Hedgehog-Associated Medulloblastoma. Cancer Research, 2010, 70, 5220-5225.	0.9	19
48	Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the United States of America, 2009, 106, 14132-14137.	7.1	274
49	Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 11î²HSD2-dependent mechanism. Journal of Clinical Investigation, 2009, 119, 267-77.	8.2	103
50	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	16.8	572
51	Forkhead Transcription Factor FoxM1 Regulates Mitotic Entry and Prevents Spindle Defects in Cerebellar Granule Neuron Precursors. Molecular and Cellular Biology, 2007, 27, 8259-8270.	2.3	84
52	Stress, Depression and Hippocampal Apoptosis. CNS and Neurological Disorders - Drug Targets, 2006, 5, 531-546.	1.4	201
53	Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flkâ€1 protein expression. European Journal of Neuroscience, 2005, 21, 1304-1314.	2.6	193
54	Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. European Journal of Neuroscience, 2004, 19, 131-144.	2.6	286

VIVI Μ HEINE

#	Article	IF	CITATIONS
55	Increased P27KIP1 protein expression in the dentate gyrus of chronically stressed rats indicates G1 arrest involvement. Neuroscience, 2004, 129, 593-601.	2.3	48
56	Effects of Chronic Stress on Structure and Cell Function in Rat Hippocampus and Hypothalamus. Stress, 2004, 7, 221-231.	1.8	281
57	Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus–pituitary–adrenal axis activation. Neurobiology of Aging, 2004, 25, 361-375.	3.1	288
58	Gene expression patterns in rat dentate granule cells: comparison between fresh and fixed tissue. Journal of Neuroscience Methods, 2003, 131, 205-211.	2.5	9
59	Therapeutic potential of human stem cell transplantations for Vanishing White Matter: A quest for the Goldilocks graft. CNS Neuroscience and Therapeutics, 0, , .	3.9	1