
Henrik Strahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9295962/publications.pdf Version: 2024-02-01

HENDIK STDAHL

#	Article	IF	CITATIONS
1	Membrane potential is important for bacterial cell division. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12281-12286.	7.1	426
2	Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7077-E7086.	7.1	326
3	The actin homologue MreB organizes the bacterial cell membrane. Nature Communications, 2014, 5, 3442.	12.8	223
4	Analysis of Antimicrobial-Triggered Membrane Depolarization Using Voltage Sensitive Dyes. Frontiers in Cell and Developmental Biology, 2016, 4, 29.	3.7	207
5	The type VI secretion system deploys antifungal effectors against microbial competitors. Nature Microbiology, 2018, 3, 920-931.	13.3	199
6	Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nature Cell Biology, 2018, 20, 144-151.	10.3	182
7	Bacterial Membranes: Structure, Domains, and Function. Annual Review of Microbiology, 2017, 71, 519-538.	7.3	178
8	Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nature Communications, 2019, 10, 890.	12.8	153
9	Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4601-10.	7.1	116
10	Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis. Scientific Reports, 2017, 7, 44332.	3.3	98
11	Membrane Recognition and Dynamics of the RNA Degradosome. PLoS Genetics, 2015, 11, e1004961.	3.5	93
12	ABCF ATPases Involved in Protein Synthesis, Ribosome Assembly and Antibiotic Resistance: Structural and Functional Diversification across the Tree of Life. Journal of Molecular Biology, 2019, 431, 3568-3590.	4.2	90
13	A widespread toxinâ^'antitoxin system exploiting growth control via alarmone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10500-10510.	7.1	81
14	Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nature Communications, 2020, 11, 646.	12.8	58
15	A family of Type VI secretion system effector proteins that form ion-selective pores. Nature Communications, 2019, 10, 5484.	12.8	57
16	A membrane-depolarizing toxin substrate of the <i>Staphylococcus aureus</i> type VII secretion system mediates intraspecies competition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20836-20847.	7.1	57
17	Against the mainstream: the membraneâ€associated type <scp>I</scp> toxin <scp>BsrG</scp> from <scp><i>B</i></scp> <i>acillus subtilis</i> interferes with cell envelope biosynthesis without increasing membrane permeability. Molecular Microbiology, 2015, 98, 651-666.	2.5	54
18	Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. EMBO Journal, 2022, 41, e109800.	7.8	52

HENRIK STRAHL

#	Article	IF	CITATIONS
19	Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin. ACS Chemical Biology, 2018, 13, 207-214.	3.4	50
20	Localization of general and regulatory proteolysis in <i>Bacillus subtilis</i> cells. Molecular Microbiology, 2008, 70, 682-694.	2.5	48
21	Measurement of Cell Membrane Fluidity by Laurdan GP: Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, 2017, 1520, 159-174.	0.9	47
22	Growth rate control of flagellar assembly in Escherichia coli strain RP437. Scientific Reports, 2017, 7, 41189.	3.3	45
23	The extremely halophilic archaeon Halobacterium salinarum R1 responds to potassium limitation by expression of the K+-transporting KdpFABC P-type ATPase and by a decrease in intracellular K+. Extremophiles, 2008, 12, 741-752.	2.3	39
24	Finding the corners in a cell. Current Opinion in Microbiology, 2012, 15, 731-736.	5.1	31
25	Assessing Membrane Fluidity and Visualizing Fluid Membrane Domains in Bacteria Using Fluorescent Membrane Dyes. Bio-protocol, 2018, 8, e3063.	0.4	31
26	The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Frontiers in Microbiology, 2020, 11, 151.	3.5	29
27	A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
28	The Gram-positive model organism Bacillus subtilis does not form microscopically detectable cardiolipin-specific lipid domains. Microbiology (United Kingdom), 2018, 164, 475-482.	1.8	15
29	Time-Delayed In Vivo Assembly of Subunit a into Preformed Escherichia coli FoF1 ATP Synthase. Journal of Bacteriology, 2013, 195, 4074-4084.	2.2	13
30	Membrane Curvature and the Tol-Pal Complex Determine Polar Localization of the Chemoreceptor Tar in Escherichia coli. Journal of Bacteriology, 2018, 200, .	2.2	12
31	Archaeal transcriptional regulation of the prokaryotic KdpFABC complex mediating K+ uptake in H. salinarum. Extremophiles, 2011, 15, 643-652.	2.3	11
32	Disruption of the Cytoplasmic Membrane Structure and Barrier Function Underlies the Potent Antiseptic Activity of Octenidine in Gram-Positive Bacteria. Applied and Environmental Microbiology, 2022, 88, e0018022.	3.1	9
33	Regulation of para-cresol production in Clostridioides difficile. Current Opinion in Microbiology, 2022, 65, 131-137.	5.1	1