Ryuji Igarashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9295845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Real-Time Background-Free Selective Imaging of Fluorescent Nanodiamonds in Vivo. Nano Letters, 2012, 12, 5726-5732.	9.1	177
2	Distance Determination in Proteins inside <i>Xenopus laevis</i> Oocytes by Double Electronâ^'Electron Resonance Experiments. Journal of the American Chemical Society, 2010, 132, 8228-8229.	13.7	120
3	pH Nanosensor Using Electronic Spins in Diamond. ACS Nano, 2019, 13, 11726-11732.	14.6	68
4	Magnetometer with nitrogen-vacancy center in a bulk diamond for detecting magnetic nanoparticles in biomedical applications. Scientific Reports, 2020, 10, 2483.	3.3	66
5	Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. RSC Advances, 2015, 5, 13818-13827.	3.6	46
6	One-Pot Synthesis of Highly Dispersible Fluorescent Nanodiamonds for Bioconjugation. Bioconjugate Chemistry, 2018, 29, 2786-2792.	3.6	39
7	Monodisperse Five-Nanometer-Sized Detonation Nanodiamonds Enriched in Nitrogen-Vacancy Centers. ACS Nano, 2019, 13, 6461-6468.	14.6	38
8	Overcoming humidity-induced swelling of graphene oxide-based hydrogen membranes using charge-compensating nanodiamonds. Nature Energy, 2021, 6, 1176-1187.	39.5	37
9	Molecular Basis for SUMOylation-dependent Regulation of DNA Binding Activity of Heat Shock Factor 2. Journal of Biological Chemistry, 2009, 284, 2435-2447.	3.4	36
10	Tracking the 3D Rotational Dynamics in Nanoscopic Biological Systems. Journal of the American Chemical Society, 2020, 142, 7542-7554.	13.7	34
11	Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position. Scientific Reports, 2018, 8, 5463.	3.3	33
12	Triple nitrogen-vacancy centre fabrication by C5N4Hn ion implantation. Nature Communications, 2019, 10, 2664.	12.8	33
13	Nanodiamond mediated interfacial polymerization for high performance nanofiltration membrane. Journal of Membrane Science, 2020, 603, 118003.	8.2	32
14	Nanodiamonds for bioapplications–specific targeting strategies. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129354.	2.4	30
15	Suppression of Nonspecific Protein–Nanodiamond Adsorption Enabling Specific Targeting of Nanodiamonds to Biomolecules of Interest. Chemistry Letters, 2015, 44, 354-356.	1.3	27
16	Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. Nanomaterials, 2016, 6, 56.	4.1	24
17	Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation. Diamond and Related Materials, 2014, 49, 33-38.	3.9	18
18	Optically Detected Magnetic Resonance of Nanodiamonds <i>In Vivo</i> ; Implementation of Selective Imaging and Fast Sampling. Journal of Nanoscience and Nanotechnology, 2015, 15, 1014-1021.	0.9	18

Ryuji Igarashi

#	Article	IF	CITATIONS
19	High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17236-17241.	7.1	15
20	Improving the electron spin properties of nitrogen-vacancy centres in nanodiamonds by near-field etching. Scientific Reports, 2018, 8, 15847.	3.3	15
21	Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory. Analytical Sciences, 2016, 32, 1159-1164.	1.6	13
22	Substrate/Product-Targeted NMR Monitoring of Pyrimidine Catabolism and Its Inhibition by a Clinical Drug. ACS Chemical Biology, 2012, 7, 535-542.	3.4	11
23	All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, <i>In Vivo</i> and <i>Ex Vivo</i> . ACS Nano, 2021, 15, 12869-12879.	14.6	10
24	Turn-on Detection of Targeted Biochemical Reactions by Triple Resonance NMR Analysis Using Isotope-labeled Probe. Chemistry Letters, 2010, 39, 926-928.	1.3	8
25	Room-temperature hyperpolarization of polycrystalline samples with optically polarized triplet electrons: pentacene or nitrogen-vacancy center in diamond?. Magnetic Resonance, 2021, 2, 33-48.	1.9	8
26	A simple and soft chemical deaggregation method producing single-digit detonation nanodiamonds. Nanoscale Advances, 2022, 4, 2268-2277.	4.6	8
27	Noninvasive Mechanochemical Imaging in Unconstrained Caenorhabditis elegans. Materials, 2018, 11, 1034.	2.9	7
28	A Nanodiamond-peptide Bioconjugate for Fluorescence and ODMR Microscopy of a Single Actin Filament. Analytical Sciences, 2016, 32, 1165-1170.	1.6	6
29	Machine-Learning Optimization of Multiple Measurement Parameters Nonlinearly Affecting the Signal Quality. ACS Measurement Science Au, 2021, 1, 20-26.	4.4	6
30	Anomalous Formation of Irradiation-Induced Nitrogen-Vacancy Centers in 5 nm-Sized Detonation Nanodiamonds. Journal of Physical Chemistry C, 2022, 126, 5206-5217.	3.1	6
31	Optimization of Wide-Field ODMR Measurements Using Fluorescent Nanodiamonds to Improve Temperature Determination Accuracy. Nanomaterials, 2020, 10, 2282.	4.1	5
32	Magnetic Field Generation System of the Magnetic Probe With Diamond Quantum Sensor and Ferromagnetic Materials for the Detection of Sentinel Lymph Nodes With Magnetic Nanoparticles. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	5
33	Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	2
34	Optically Detected Magnetic Resonance Microscopy Using Nanodiamond Sensors: Novel <i>in vivo</i> Imaging Techniques. Seibutsu Butsuri, 2017, 57, 212-215.	0.1	1
35	Nanometre-Scale Visualization of Chemical Parameter Changes by T1-Weighted ODMR Imaging Using a Fluorescent Nanodiamond. Chemosensors, 2020, 8, 68.	3.6	1
36	Non-contact measurement of internal body temperature using subcutaneously implanted diamond microparticles. Biomaterials Science, 2021, 9, 7049-7053.	5.4	1

#	Article	IF	CITATIONS
37	Calcium Imaging in Freely Behaving Caenorhabditis elegans with Well-Controlled, Nonlocalized Vibration. Journal of Visualized Experiments, 2021, , .	0.3	1
38	3P-091 Molecular basis for SUMOylation-dependent regulation of DNA binding activity of Heat Shock Factor 2(Nucleic acid binding proteins,The 47th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2009, 49, S166.	0.1	0
39	3P283 Optically detected magnetic resonance for fluorescent single nanodiamond in cell and c.elegance(26. Measurements,Poster). Seibutsu Butsuri, 2013, 53, S258.	0.1	0

1SCP-05 Optically detected magnetic resonance spectroscopy of nitrogen-vacancy centers for subnanoscopic measurement in vivo(1SCP Challenges to in vivo biophysics,Symposium,The 51th Annual) Tj ETQqO@D rgBT /@verlock 1 40