
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293459/publications.pdf Version: 2024-02-01

STEVEN H LIN

#	Article	IF	CITATIONS
1	The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Research, 2020, 30, 146-162.	12.0	616
2	Integrating genomic features for non-invasive early lung cancer detection. Nature, 2020, 580, 245-251.	27.8	379
3	Combining Immunotherapy and Radiotherapy for Cancer Treatment: Current Challenges and Future Directions. Frontiers in Pharmacology, 2018, 9, 185.	3.5	277
4	Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respiratory Medicine,the, 2021, 9, 467-475.	10.7	277
5	Adjuvant Systemic Therapy and Adjuvant Radiation Therapy for Stage I to IIIA Completely Resected Non–Small-Cell Lung Cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update. Journal of Clinical Oncology, 2017, 35, 2960-2974.	1.6	258
6	Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1078-1085.	0.8	230
7	A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Critical Reviews in Oncology/Hematology, 2018, 123, 42-51.	4.4	218
8	Circulating tumor DNA dynamics predict benefit from consolidation immunotherapy in locally advanced non-small-cell lung cancer. Nature Cancer, 2020, 1, 176-183.	13.2	201
9	Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 128-135.	0.8	184
10	Characterization of hypoxia-associated molecular features to aid hypoxia-targeted therapy. Nature Metabolism, 2019, 1, 431-444.	11.9	158
11	Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. Journal of Clinical Oncology, 2020, 38, 1569-1579.	1.6	158
12	Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncology, The, 2021, 22, 1448-1457.	10.7	154
13	Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. Journal of Clinical Investigation, 2018, 128, 2104-2115.	8.2	152
14	Circulating Tumor DNA Analysis for Detection of Minimal Residual Disease After Chemoradiotherapy for Localized Esophageal Cancer. Gastroenterology, 2020, 158, 494-505.e6.	1.3	147
15	Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: a randomized phase I/II trial. , 2020, 8, e001001.		143
16	Spatial interaction of tumor cells and regulatory T cells correlates with survival in non-small cell lung cancer. Lung Cancer, 2018, 117, 73-79.	2.0	135
17	Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nature Communications, 2020, 11, 4946.	12.8	120
18	Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non–Small Cell Lung Cancer. JAMA Oncology, 2017, 3, e172032.	7.1	119

#	Article	IF	CITATIONS
19	Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival—The University of Texas MD Anderson Cancer Center experience. Cancer, 2017, 123, 4106-4113.	4.1	118
20	Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Scientific Reports, 2015, 5, 9850.	3.3	117
21	Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon-based radiation therapy. Radiotherapy and Oncology, 2018, 128, 154-160.	0.6	109
22	Diffusion-weighted magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemoradiotherapy in esophageal cancer. Radiotherapy and Oncology, 2015, 115, 163-170.	0.6	107
23	Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, e345-e351.	0.8	104
24	The Rise of Radiomics and Implications for Oncologic Management. Journal of the National Cancer Institute, 2017, 109, .	6.3	104
25	The Incremental Value of Subjective and Quantitative Assessment of ¹⁸ F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer. Journal of Nuclear Medicine, 2016, 57, 691-700.	5.0	99
26	Phase II Trial of Concurrent Atezolizumab With Chemoradiation for Unresectable NSCLC. Journal of Thoracic Oncology, 2020, 15, 248-257.	1.1	97
27	An Improved Patient-Derived Xenograft Humanized Mouse Model for Evaluation of Lung Cancer Immune Responses. Cancer Immunology Research, 2019, 7, 1267-1279.	3.4	92
28	Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer. Radiotherapy and Oncology, 2017, 123, 376-381.	0.6	81
29	Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 99, 667-676.	0.8	79
30	Multi-Institutional Experience of Stereotactic Ablative Radiation Therapy for Stage I Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 97, 362-371.	0.8	78
31	Proton therapy reduces the likelihood of high-grade radiation-induced lymphopenia in glioblastoma patients: phase II randomized study of protons vs photons. Neuro-Oncology, 2021, 23, 284-294.	1.2	78
32	Radiation modality use and cardiopulmonary mortality risk in elderly patients with esophageal cancer. Cancer, 2016, 122, 917-928.	4.1	75
33	Prognostic significance of baseline positron emission tomography and importance of clinical complete response in patients with esophageal or gastroesophageal junction cancer treated with definitive chemoradiotherapy. Cancer, 2011, 117, 4823-4833.	4.1	72
34	Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy. Radiotherapy and Oncology, 2017, 125, 48-54.	0.6	69
35	Lymphocyte-Sparing Effect of Proton Therapy in Patients with Esophageal Cancer Treated with Definitive Chemoradiation. International Journal of Particle Therapy, 2017, 4, 23-32.	1.8	69
36	Ultra high dose rate (35 Gy/sec) radiation does not spare the normal tissue in cardiac and splenic models of lymphopenia and gastrointestinal syndrome. Scientific Reports, 2019, 9, 17180.	3.3	66

#	Article	IF	CITATIONS
37	Multi-institutional Analysis of Recurrence and Survival After Neoadjuvant Chemoradiotherapy of Esophageal Cancer. Annals of Surgery, 2019, 269, 663-670.	4.2	65
38	Improving Outcomes for Esophageal Cancer using Proton Beam Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 95, 488-497.	0.8	64
39	Motionâ€robust intensityâ€modulated proton therapy for distal esophageal cancer. Medical Physics, 2016, 43, 1111-1118.	3.0	63
40	PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nature Communications, 2016, 7, 10633.	12.8	63
41	Incidence and Onset of Severe Cardiac Events After Radiotherapy for Esophageal Cancer. Journal of Thoracic Oncology, 2020, 15, 1682-1690.	1.1	63
42	Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Nature Communications, 2019, 10, 4363.	12.8	61
43	New DNA Methylation Markers and Global DNA Hypomethylation Are Associated with Oral Cancer Development. Cancer Prevention Research, 2015, 8, 1027-1035.	1.5	60
44	Stereotactic radiosurgery of early melanoma brain metastases after initiation of anti-CTLA-4 treatment is associated with improved intracranial control. Radiotherapy and Oncology, 2017, 125, 80-88.	0.6	58
45	High lymphocyte count during neoadjuvant chemoradiotherapy is associated with improved pathologic complete response in esophageal cancer. Radiotherapy and Oncology, 2018, 128, 584-590.	0.6	58
46	Clinical outcomes and toxicities of proton radiotherapy for gastrointestinal neoplasms: a systematic review. Journal of Gastrointestinal Oncology, 2016, 7, 644-664.	1.4	56
47	Prognostic significance of pretreatment total lymphocyte count and neutrophil-to-lymphocyte ratio in extensive-stage small-cell lung cancer. Radiotherapy and Oncology, 2018, 126, 499-505.	0.6	56
48	Association Between Sex and Immune-Related Adverse Events During Immune Checkpoint Inhibitor Therapy. Journal of the National Cancer Institute, 2021, 113, 1396-1404.	6.3	56
49	Phase 2 Study of Stereotactic Body Radiation Therapy and Stereotactic Body Proton Therapy for High-Risk, Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 558-563.	0.8	55
50	The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy. Radiotherapy and Oncology, 2020, 146, 180-186.	0.6	54
51	The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology Biology Physics, 2021, 111, 936-948.	0.8	53
52	ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Science Immunology, 2022, 7, .	11.9	52
53	The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiation-induced lymphopenia after chemoradiation therapy. Radiotherapy and Oncology, 2019, 133, 9-15.	0.6	50
54	Signet Ring Cells in Esophageal Adenocarcinoma Predict Poor Response to Preoperative Chemoradiation. Annals of Thoracic Surgery, 2014, 98, 1064-1071.	1.3	48

#	Article	IF	CITATIONS
55	The impact of histology on recurrence patterns in esophageal cancer treated with definitive chemoradiotherapy. Radiotherapy and Oncology, 2017, 124, 318-324.	0.6	47
56	Preoperative Prediction of Pathologic Response to Neoadjuvant Chemoradiotherapy in Patients With Esophageal Cancer Using 18F-FDG PET/CT and DW-MRI: A Prospective MulticenterAStudy. International Journal of Radiation Oncology Biology Physics, 2020, 106, 998-1009.	0.8	46
57	Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial–mesenchymal transition. BMC Genomics, 2014, 15, 1079.	2.8	45
58	Patterns of Care and Treatment Outcomes of ElderlyÂPatients with Stage I Esophageal Cancer: Analysis of the National Cancer Data Base. Journal of Thoracic Oncology, 2017, 12, 1152-1160.	1.1	44
59	Expert consensus on neoadjuvant immunotherapy for non-small cell lung cancer. Translational Lung Cancer Research, 2020, 9, 2696-2715.	2.8	43
60	Outcomes of Stereotactic Body Radiotherapy for T1-T2N0 Small Cell Carcinoma According to Addition of Chemotherapy and Prophylactic Cranial Irradiation: A Multicenter Analysis. Clinical Lung Cancer, 2017, 18, 675-681.e1.	2.6	42
61	Prognostic Significance of Total Lymphocyte Count, Neutrophil-to-lymphocyte Ratio, and Platelet-to-lymphocyte Ratio in Limited-stage Small-cell Lung Cancer. Clinical Lung Cancer, 2019, 20, 117-123.	2.6	42
62	Prediction of Severe Lymphopenia During Chemoradiation Therapy for Esophageal Cancer: Development and Validation of a Pretreatment Nomogram. Practical Radiation Oncology, 2020, 10, e16-e26.	2.1	42
63	Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non–small cell lung cancer after concurrent chemoradiation. Science Advances, 2020, 6, eaaz6162.	10.3	42
64	Rates of Overall Survival and Intracranial Control in the Magnetic Resonance Imaging Era for Patients With Limited-Stage Small Cell Lung Cancer With and Without Prophylactic Cranial Irradiation. JAMA Network Open, 2020, 3, e201929.	5.9	42
65	Definitive Chemoradiation Therapy for Esophageal Cancer in the Elderly: Clinical Outcomes for Patients Exceeding 80ÂYears Old. International Journal of Radiation Oncology Biology Physics, 2017, 98, 811-819.	0.8	41
66	Opportunities and Challenges in the Era of Molecularly Targeted Agents and Radiation Therapy. Journal of the National Cancer Institute, 2013, 105, 686-693.	6.3	40
67	Biologically Effective Dose in Stereotactic Body Radiotherapy and Survival for Patients With Early-Stage NSCLC. Journal of Thoracic Oncology, 2020, 15, 101-109.	1.1	38
68	A High Content Clonogenic Survival Drug Screen Identifies MEK Inhibitors as Potent Radiation Sensitizers for KRAS Mutant Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2014, 9, 965-973.	1.1	35
69	Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non–Small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 5744-5756.	7.0	35
70	Breathing New Life Into Hypoxia-Targeted Therapies for Non–Small Cell Lung Cancer. Journal of the National Cancer Institute, 2018, 110, 1-2.	6.3	34
71	Multimodal Imaging of Pathologic Response to Chemoradiation in Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 996-1001.	0.8	34
72	Reirradiation of thoracic cancers with intensity modulated proton therapy. Practical Radiation Oncology, 2018, 8, 58-65.	2.1	34

#	Article	IF	CITATIONS
73	Association of antibiotic treatment with immune-related adverse events in patients with cancer receiving immunotherapy. , 2022, 10, e003779.		34
74	Bayesian Group Sequential Clinical Trial Design Using Total Toxicity Burden and Progression-Free Survival. Journal of the Royal Statistical Society Series C: Applied Statistics, 2016, 65, 273-297.	1.0	32
75	Recurrence Risk Stratification After Preoperative Chemoradiation of Esophageal Adenocarcinoma. Annals of Surgery, 2018, 268, 289-295.	4.2	32
76	Use of Simultaneous Radiation Boost Achieves High Control Rates in Patients With Non–Small-Cell Lung Cancer Who Are Not Candidates for Surgery or Conventional Chemoradiation. Clinical Lung Cancer, 2015, 16, 156-163.	2.6	31
77	RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non–small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 341-350.	7.0	31
78	Alternative Multidisciplinary Management Options for Locally Advanced NSCLC During the Coronavirus Disease 2019 Global Pandemic. Journal of Thoracic Oncology, 2020, 15, 1137-1146.	1.1	31
79	The emerging field of radiomics in esophageal cancer: current evidence and future potential. Translational Cancer Research, 2016, 5, 410-423.	1.0	31
80	The value of 18F-FDG PET before and after induction chemotherapy for the early prediction of a poor pathologic response to subsequent preoperative chemoradiotherapy in oesophageal adenocarcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 71-80.	6.4	30
81	Advances in radiotherapy for esophageal cancer. Annals of Translational Medicine, 2018, 6, 79-79.	1.7	30
82	Coronary Artery Dose-Volume Parameters Predict Risk of Calcification After Radiation Therapy. Journal of Cardiovascular Imaging, 2019, 27, 268.	0.7	30
83	A Multi-institutional Analysis of Trimodality Therapy for Esophageal Cancer in Elderly Patients. International Journal of Radiation Oncology Biology Physics, 2017, 98, 820-828.	0.8	28
84	Clinical outcomes of intensity modulated proton therapy and concurrent chemotherapy in esophageal carcinoma: a single institutional experience. Advances in Radiation Oncology, 2017, 2, 301-307.	1.2	28
85	NTCP model for postoperative complications and one-year mortality after trimodality treatment in oesophageal cancer. Radiotherapy and Oncology, 2019, 141, 33-40.	0.6	28
86	Comparing Proton Beam to Intensity Modulated Radiation Therapy Planning in Esophageal Cancer. International Journal of Particle Therapy, 2015, 1, 866-877.	1.8	28
87	Prospective Study of Patient-Reported Symptom Burden in Patients With Non–Small-Cell Lung Cancer Undergoing Proton or Photon Chemoradiation Therapy. Journal of Pain and Symptom Management, 2016, 51, 832-838.	1.2	27
88	Modern Radiotherapy and Risk of Cardiotoxicity. Chemotherapy, 2020, 65, 65-76.	1.6	27
89	Serum inflammatory miRNAs predict radiation esophagitis in patients receiving definitive radiochemotherapy for non-small cell lung cancer. Radiotherapy and Oncology, 2014, 113, 379-384.	0.6	26
90	Radiotherapy Alone or Concurrent Chemoradiation for Esophageal Squamous Cell Carcinoma in Elderly Patients. Journal of Cancer, 2017, 8, 3242-3250.	2.5	26

#	Article	IF	CITATIONS
91	Giant Circulating Cancer-Associated Macrophage-Like Cells Are Associated With Disease Recurrence and Survival in Non–Small-Cell Lung Cancer Treated With Chemoradiation and Atezolizumab. Clinical Lung Cancer, 2021, 22, e451-e465.	2.6	26
92	Patterns of failure and clinical outcomes of definitive radiotherapy for cervical esophageal cancer. Oncotarget, 2017, 8, 21852-21860.	1.8	26
93	Hsp90 Inhibitor Ganetespib Sensitizes Non–Small Cell Lung Cancer to Radiation but Has Variable Effects with Chemoradiation. Clinical Cancer Research, 2016, 22, 5876-5886.	7.0	25
94	Recent advances in intensity modulated radiotherapy and proton therapy for esophageal cancer. Expert Review of Anticancer Therapy, 2017, 17, 635-646.	2.4	25
95	Radiation-induced lymphopenia during chemoradiation therapy for non-small cell lung cancer is linked with age, lung V5, and XRCC1 rs25487 genotypes in lymphocytes. Radiotherapy and Oncology, 2021, 154, 187-193.	0.6	25
96	Heart and lung doses are independent predictors of overall survival in esophageal cancer after chemoradiotherapy. Clinical and Translational Radiation Oncology, 2019, 17, 17-23.	1.7	24
97	Cancer associated macrophage-like cells and prognosis of esophageal cancer after chemoradiation therapy. Journal of Translational Medicine, 2020, 18, 413.	4.4	24
98	Esophageal cancer: diagnosis and management. Chinese Journal of Cancer, 2010, 29, 843-854.	4.9	24
99	Toxicity and Survival After Intensity-Modulated Proton Therapy Versus Passive Scattering Proton Therapy for NSCLC. Journal of Thoracic Oncology, 2021, 16, 269-277.	1.1	23
100	Preoperative Nomogram to Risk Stratify Patients for the Benefit of Trimodality Therapy in Esophageal Adenocarcinoma. Annals of Surgical Oncology, 2018, 25, 1598-1607.	1.5	22
101	Simple oligonucleotide-based multiplexing of single-cell chromatin accessibility. Molecular Cell, 2021, 81, 4319-4332.e10.	9.7	22
102	Radiation-Associated Lymphopenia and Outcomes of Patients with Unresectable Hepatocellular Carcinoma Treated with Radiotherapy. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 57-69.	3.7	21
103	Concurrent Versus Sequential Chemoradiation Therapy in Completely Resected Pathologic N2 Non-Small Cell Lung Cancer: Propensity-Matched Analysis of the National Cancer Data Base. Annals of Surgical Oncology, 2018, 25, 1245-1253.	1.5	20
104	Prediction and diagnosis of interval metastasis after neoadjuvant chemoradiotherapy for oesophageal cancer using 18F-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1742-1751.	6.4	20
105	Mitigating the impact of COVID-19 on oncology: Clinical and operational lessons from a prospective radiation oncology cohort tested for COVID-19. Radiotherapy and Oncology, 2020, 148, 252-257.	0.6	20
106	Plasmonic nano-aperture label-free imaging (PANORAMA). Nature Communications, 2020, 11, 5805.	12.8	19
107	¹⁸ F-FDG PET Response After Induction Chemotherapy Can Predict Who Will Benefit from Subsequent Esophagectomy After Chemoradiotherapy for Esophageal Adenocarcinoma. Journal of Nuclear Medicine, 2017, 58, 1756-1763.	5.0	18
108	Association of Treatment at High-Volume Facilities With Survival in Patients Receiving Chemoradiotherapy for Nasopharyngeal Cancer. JAMA Otolaryngology - Head and Neck Surgery, 2018, 144, 86-89.	2.2	18

#	Article	IF	CITATIONS
109	A nomogram that predicts pathologic complete response to neoadjuvant chemoradiation also predicts survival outcomes after definitive chemoradiation for esophageal cancer. Journal of Gastrointestinal Oncology, 2015, 6, 45-52.	1.4	18
110	Prognostic Factors for Locoregional Recurrence in Patients with Thoracic Esophageal Squamous Cell Carcinoma Treated with Radical Two-Field Lymph Node Dissection: Results from Long-Term Follow-Up. Annals of Surgical Oncology, 2017, 24, 966-973.	1.5	17
111	Correlation between functional imaging markers derived from diffusion-weighted MRI and 18F-FDG PET/CT in esophageal cancer. Nuclear Medicine Communications, 2018, 39, 60-67.	1.1	17
112	Proton beam therapy for gastrointestinal cancers: past, present, and future. Journal of Gastrointestinal Oncology, 2018, 9, 962-971.	1.4	17
113	Evolving Practice Patterns in the Use of Prophylactic Cranial Irradiation for Extensive-Stage Small Cell Lung Cancer. JAMA Network Open, 2019, 2, e199135.	5.9	17
114	A novel deep learning model using dosimetric and clinical information for grade 4 radiotherapy-induced lymphopenia prediction. Physics in Medicine and Biology, 2020, 65, 035014.	3.0	17
115	Nucleus-mitochondria positive feedback loop formed by ERK5 S496 phosphorylation-mediated poly (ADP-ribose) polymerase activation provokes persistent pro-inflammatory senescent phenotype and accelerates coronary atherosclerosis after chemo-radiation. Redox Biology, 2021, 47, 102132.	9.0	17
116	The Impact of Radiation Dose to Heart Substructures on Major Coronary Events and Patient Survival after Chemoradiation Therapy for Esophageal Cancer. Cancers, 2022, 14, 1304.	3.7	17
117	A Prognostic Scoring Model for the Utility of Induction Chemotherapy Prior to Neoadjuvant Chemoradiotherapy in Esophageal Cancer. Journal of Thoracic Oncology, 2017, 12, 1001-1010.	1.1	16
118	Analysis of Factors Affecting Successful Clinical Trial Enrollment in the Context of Three Prospective, Randomized, Controlled Trials. International Journal of Radiation Oncology Biology Physics, 2017, 97, 770-777.	0.8	16
119	Therapeutic targeting of the PI4K2A/PKR lysosome network is critical for misfolded protein clearance and survival in cancer cells. Oncogene, 2020, 39, 801-813.	5.9	16
120	Antitumor effects of cyclin dependent kinase 9 inhibition in esophageal adenocarcinoma. Oncotarget, 2017, 8, 28696-28710.	1.8	16
121	Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments. Medical Physics, 2022, 49, 497-509.	3.0	16
122	Minocycline Reduces Chemoradiation-Related Symptom Burden in Patients with Non-Small Cell Lung Cancer: A Phase 2 Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2020, 106, 100-107.	0.8	15
123	High-Flow Nasal Cannula Therapy for Exertional Dyspnea in Patients with Cancer: A Pilot Randomized Clinical Trial. Oncologist, 2021, 26, e1470-e1479.	3.7	15
124	Single Institution Experience of Proton and Photon-based Postoperative Radiation Therapy for Non–small-cell Lung Cancer. Clinical Lung Cancer, 2021, 22, e745-e755.	2.6	15
125	Phase II trial combining atezolizumab concurrently with chemoradiation therapy in locally advanced non-small cell lung cancer Journal of Clinical Oncology, 2019, 37, 8512-8512.	1.6	15
126	Radiation-Induced Cardiovascular Disease: Mechanisms, Prevention, and Treatment. Current Oncology Reports, 2022, 24, 543-553.	4.0	15

#	Article	IF	CITATIONS
127	Association of Driver Oncogene Variations With Outcomes in Patients With Locally Advanced Non–Small Cell Lung Cancer Treated With Chemoradiation and Consolidative Durvalumab. JAMA Network Open, 2022, 5, e2215589.	5.9	15
128	Stereotactic body radiation therapy for stage I small cell lung cancer: a single institutional case series and review of the literature. Journal of Radiation Oncology, 2014, 3, 285-291.	0.7	14
129	Long-term survival and toxicity outcomes of intensity modulated radiation therapy for the treatment of esophageal cancer: A large single-institutional cohort study. Advances in Radiation Oncology, 2017, 2, 316-324.	1.2	14
130	Esophageal adenocarcinoma with any component of signet ring cells portends poor prognosis and response to neoadjuvant therapy. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1404-1412.e2.	0.8	14
131	Validation of a Nomogram Predicting Survival After Trimodality Therapy for Esophageal Cancer. Annals of Thoracic Surgery, 2018, 106, 1541-1547.	1.3	13
132	Biology of the Radio- and Chemo-Responsiveness in HPV Malignancies. Seminars in Radiation Oncology, 2021, 31, 274-285.	2.2	13
133	Current status and application of proton therapy for esophageal cancer. Radiotherapy and Oncology, 2021, 164, 27-36.	0.6	13
134	Profiling of immune features to predict immunotherapy efficacy. Innovation(China), 2021, 3, 100194.	9.1	13
135	Bayesian regression analyses of radiation modality effects on pericardial and pleural effusion and survival in esophageal cancer. Radiotherapy and Oncology, 2016, 121, 70-74.	0.6	12
136	Biological responses of human solid tumor cells to Xâ€ray irradiation within a 1.5â€Tesla magnetic field generated by a magnetic resonance imaging–linear accelerator. Bioelectromagnetics, 2016, 37, 471-480.	1.6	12
137	Outcomes and toxicity following high-dose radiation therapy in 15 fractions for non-small cell lung cancer. Practical Radiation Oncology, 2017, 7, 433-441.	2.1	12
138	Recurrence Risk Based on Pathologic Stage After Neoadjuvant Chemoradiotherapy in Esophageal Squamous Cell Carcinoma: Implications for Risk-Based Postoperative Surveillance Strategies. Annals of Surgical Oncology, 2018, 25, 3639-3646.	1.5	12
139	Targeting CDK9 and MCL-1 by a new CDK9/p-TEFb inhibitor with and without 5-fluorouracil in esophageal adenocarcinoma. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986485.	3.2	11
140	Radiation dose and pathological response in oesophageal cancer patients treated with neoadjuvant chemoradiotherapy followed by surgery: a multi-institutional analysis. Acta Oncológica, 2019, 58, 1358-1365.	1.8	11
141	A novel patient-derived orthotopic xenograft model of esophageal adenocarcinoma provides a platform for translational discoveries. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	11
142	Commercial Insurance Coverage of Advanced Radiation Therapy Techniques Compared With American Society for Radiation Oncology Model Policies. Practical Radiation Oncology, 2020, 10, 324-329.	2.1	11
143	Radiation-Induced Lymphopenia Risks of Photon Versus Proton Therapy for Esophageal Cancer Patients. International Journal of Particle Therapy, 2021, 8, 17-27.	1.8	11
144	Association of clonal hematopoiesis mutations with clinical outcomes: A systematic review and metaâ€analysis. American Journal of Hematology, 2022, 97, 411-420.	4.1	11

#	Article	IF	CITATIONS
145	Patient-Specific Lymphocyte Loss Kinetics as Biomarker of Spleen Dose in Patients Undergoing Radiation Therapy for Upper Abdominal Malignancies. Advances in Radiation Oncology, 2021, 6, 100545.	1.2	10
146	Screening and Validation of Molecular Targeted Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e63-e74.	0.8	10
147	A Multi-Institutional Analysis of Radiation Dosimetric Predictors of Toxicity After Trimodality Therapy for Esophageal Cancer. Practical Radiation Oncology, 2021, 11, e415-e425.	2.1	10
148	Implications of the Bystander and Abscopal Effects of Radiation Therapy. Clinical Cancer Research, 2016, 22, 4763-4765.	7.0	9
149	Incidence of Second Malignancy after Successful Treatment of Limited-Stage Small–Cell Lung Cancer and Its Effects on Survival. Journal of Thoracic Oncology, 2017, 12, 1696-1703.	1.1	9
150	Clinical and Radiographic Presentations of COVID-19 Among Patients Receiving Radiation Therapy for Thoracic Malignancies. Advances in Radiation Oncology, 2020, 5, 700-704.	1.2	9
151	Proton beam therapy for the treatment of esophageal cancer. Chinese Clinical Oncology, 2016, 5, 53-53.	1.2	9
152	Bayesian variable selection for a semi-competing risks model with three hazard functions. Computational Statistics and Data Analysis, 2017, 112, 170-185.	1.2	8
153	Incidence and predictors of chest wall toxicity after high-dose radiation therapy in 15 fractions. Practical Radiation Oncology, 2017, 7, 63-71.	2.1	8
154	Present developments in reaching an international consensus for a model-based approach to particle beam therapy. Journal of Radiation Research, 2018, 59, i72-i76.	1.6	8
155	The optimal treatment approaches for stage I small cell lung cancer. Translational Lung Cancer Research, 2018, 8, 88-96.	2.8	8
156	Outcomes of re-irradiation for brain recurrence after prophylactic or therapeutic whole-brain irradiation for small cell lung Cancer: a retrospective analysis. Radiation Oncology, 2018, 13, 258.	2.7	8
157	Hematologic variables associated with brain failure in patients with small-cell lung cancer. Radiotherapy and Oncology, 2018, 128, 505-512.	0.6	8
158	Predicting Incomplete Resection in Non-Small Cell Lung Cancer Preoperatively: A Validated Nomogram. Annals of Thoracic Surgery, 2021, 111, 1052-1058.	1.3	8
159	Salvage Esophagectomy Definition Influences Comparative Outcomes in Esophageal Squamous Cell Cancers. Annals of Thoracic Surgery, 2022, 114, 2032-2040.	1.3	8
160	Dosimetric and clinical outcomes after volumetric modulated arc therapy for carcinoma of the thoracic esophagus. Advances in Radiation Oncology, 2017, 2, 325-332.	1.2	7
161	p90RSK-MAGI1 Module Controls Endothelial Permeability by Post-translational Modifications of MAGI1 and Hippo Pathway. Frontiers in Cardiovascular Medicine, 2020, 7, 542485.	2.4	7
162	Cell lines of the same anatomic site and histologic type show large variability in intrinsic radiosensitivity and relative biological effectiveness to protons and carbon ions. Medical Physics, 2021, 48, 3243-3261.	3.0	7

#	Article	IF	CITATIONS
163	Identifying Individualized Risk Profiles for Radiotherapy-Induced Lymphopenia Among Patients With Esophageal Cancer Using Machine Learning. JCO Clinical Cancer Informatics, 2021, 5, 1044-1053.	2.1	7
164	Recursive Partitioning Analysis Identifies Pretreatment Risk Groups for the Utility of Induction Chemotherapy Before Definitive Chemoradiation Therapy in Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 407-416.	0.8	6
165	Treatment disparities affect outcomes for patients with stage I esophageal cancer: a national cancer data base analysis. Journal of Gastrointestinal Oncology, 2018, 10, 74-84.	1.4	6
166	Endobronchial ultrasound-guided injection of NBTXR3 radio- enhancing nanoparticles into mediastinal and hilar lymph nodes: a swine model to evaluate feasibility, injection technique, safety, nanoparticle retention and dispersion. Journal of Thoracic Disease, 2020, 12, 2317-2324.	1.4	6
167	Severe lymphopenia acquired during chemoradiotherapy for esophageal cancer: Incidence and external validation of a prediction model. Radiotherapy and Oncology, 2021, 163, 192-198.	0.6	6
168	Targeting cyclin-dependent kinase 9 by a novel inhibitor enhances radiosensitization and identifies Axl as a novel downstream target in esophageal adenocarcinoma. Oncotarget, 2019, 10, 4703-4718.	1.8	6
169	Poly (ADP-Ribose) Polymerases (PARPs) and PARP Inhibitor-Targeted Therapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 206-212.	1.7	6
170	A hybrid deep learning model for forecasting lymphocyte depletion during radiation therapy. Medical Physics, 2022, 49, 3507-3522.	3.0	6
171	Quantifying the rate and predictors of occult lymph node involvement in patients with clinically node-negative non-small cell lung cancer. Acta Oncológica, 2022, 61, 403-408.	1.8	6
172	Safety results of NRG-LU004: Phase I trial of accelerated or conventionally fractionated radiotherapy combined with durvalumab in PD-L1–high locally advanced non-small cell lung cancer Journal of Clinical Oncology, 2022, 40, 8513-8513.	1.6	6
173	Hypoxia imaging in upper gastrointestinal tumors and application to radiation therapy. Journal of Gastrointestinal Oncology, 2018, 9, 1044-1053.	1.4	5
174	Modified En Bloc Esophagectomy Compared With Standard Resection After Neoadjuvant Chemoradiation. Annals of Thoracic Surgery, 2021, 111, 1133-1140.	1.3	5
175	Prognosis of severe lymphopenia after postoperative radiotherapy in non-small cell lung cancer: Results of a long-term follow up study. Clinical and Translational Radiation Oncology, 2021, 28, 54-61.	1.7	5
176	High-Content Clonogenic Survival Screen to Identify Chemoradiation Sensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e27-e37.	0.8	5
177	Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1131-1139.	0.8	5
178	Phase I Trial of Definitive Concurrent Chemoradiotherapy and Trametinib for KRAS-Mutated Non-Small Cell Lung Cancer. Cancer Treatment and Research Communications, 2022, 30, 100514.	1.7	5
179	Twice-daily Thoracic Radiotherapy for Limited-stage Small-cell Lung Cancer Does Not Increase the Incidence of Acute Severe Esophagitis. Clinical Lung Cancer, 2018, 19, e885-e891.	2.6	4
180	NCI 9448: Phase I study of trametinib in combination with chemoradiation for KRAS-mutant non-small cell lung cancer Journal of Clinical Oncology, 2015, 33, TPS7585-TPS7585.	1.6	4

#	Article	IF	CITATIONS
181	Executive Summary of Clinical and Technical Guidelines for Esophageal Cancer Proton Beam Therapy From the Particle Therapy Co-Operative Group Thoracic and Gastrointestinal Subcommittees. Frontiers in Oncology, 2021, 11, 748331.	2.8	4
182	The overall survival impact of prophylactic cranial irradiation in limited-stage small-cell lung cancer: A systematic review and meta-analysis. Clinical and Translational Radiation Oncology, 2022, 33, 145-152.	1.7	4
183	Evaluating Factors for Prophylactic Feeding Tube Placement in Gastroesophageal Cancer Patients Undergoing Chemoradiotherapy. Frontiers in Oncology, 2017, 7, 235.	2.8	3
184	Restaging after chemoradiotherapy for locally advanced esophageal cancer. Annals of Translational Medicine, 2019, 7, S288-S288.	1.7	3
185	Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. Journal of the National Cancer Institute, 2021, 113, 665-679.	6.3	3
186	Care Patterns for Stereotactic Radiosurgery in Small Cell Lung Cancer Brain Metastases. Clinical Lung Cancer, 2022, 23, 185-190.	2.6	3
187	Exploring the Synergy of Radiative Coupling and Substrate Undercut in Arrayed Gold Nanodisks for Economical, Ultra-Sensitive Label-Free Biosensing. IEEE Sensors Journal, 2021, 21, 23971-23978.	4.7	3
188	The Utility of Proton Beam Therapy with Concurrent Chemotherapy for the Treatment of Esophageal Cancers. Cancers, 2011, 3, 4090-4101.	3.7	2
189	Impact of Corticosteroid Administration on Outcomes Following Stereotactic Ablative Radiotherapy for Non–small-cell Lung Cancer. Clinical Lung Cancer, 2019, 20, e480-e488.	2.6	2
190	Optimizing current standard of care therapy for stage III non-small cell lung cancer. Translational Lung Cancer Research, 2020, 9, 2033-2039.	2.8	2
191	Risk Prediction for Locoregional Recurrence in Epidermal Growth Factor Receptor-Mutant Stage III-pN2 Lung Adenocarcinoma after Complete Resection: A Multi-center Retrospective Study. Journal of Cancer, 2020, 11, 6114-6121.	2.5	2
192	Thoracic Radiation Oncology Clinical Trial Accrual and Reasons for Nonenrollment: Results of a Large, Prospective, Multiyear Analysis. International Journal of Radiation Oncology Biology Physics, 2020, 107, 897-908.	0.8	2
193	Postoperative Radiotherapy for Locally Advanced NSCLC: Implications for Shifting to Conformal, High-Risk Fields. Clinical Lung Cancer, 2021, 22, 225-233.e7.	2.6	2
194	Analysis of PD-L1 and RAD50 in circulating cells recovered from lung cancer patients before and after induction of radiotherapy Journal of Clinical Oncology, 2016, 34, e20537-e20537.	1.6	2
195	Trends and Outcomes of Proton Radiation Therapy Use for Non–Small Cell Lung Cancer. International Journal of Particle Therapy, 2018, 5, 18-27.	1.8	2
196	National Quality Measure Compliance for Palliative Bone Radiation Among Patients With Metastatic Non–Small Cell Lung Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, , 1-6.	4.9	2
197	EA2183: A phase III study of consolidative radiotherapy in patients with oligometastatic HER2-negative esophageal and gastric adenocarcinoma Journal of Clinical Oncology, 2022, 40, TPS4162-TPS4162.	1.6	2
198	Invited Commentary. Annals of Thoracic Surgery, 2013, 95, 1210-1211.	1.3	1

#	Article	IF	CITATIONS
199	Successes and Failures of Combined Modalities in Upper Gastrointestinal Malignancies: New Directions. Seminars in Radiation Oncology, 2016, 26, 307-319.	2.2	1
200	Is there value of tumor stromal infiltrating lymphocytes for response assessment to chemoradiation in esophageal squamous cell carcinoma?. Annals of Translational Medicine, 2019, 7, S283-S283.	1.7	1
201	Comparing Radiation Modalities with Trimodality Therapy Using Total Toxicity Burden. International Journal of Radiation Oncology Biology Physics, 2020, 107, 1001-1005.	0.8	1
202	ctDNA analysis for personalization of consolidation immunotherapy in localized non-small cell lung cancer Journal of Clinical Oncology, 2019, 37, 2547-2547.	1.6	1
203	A multicenter study of trimodality therapy for patients 75 years and older with esophageal cancer Journal of Clinical Oncology, 2019, 37, 131-131.	1.6	1
204	Active Surveillance for Medically Inoperable Stage IA Lung Cancer in the Elderly. Cureus, 2018, 10, e3472.	0.5	1
205	Enumeration and molecular characterization of circulating tumor cells enriched by microcavity array from stage III non-small cell lung cancer patients. Translational Lung Cancer Research, 2020, 9, 1974-1985.	2.8	1
206	Health Care Resource Utilization for Esophageal Cancer Using Proton versus Photon Radiation Therapy. International Journal of Particle Therapy, 2022, 9, 18-27.	1.8	1
207	Treatment patterns and outcomes in resectable early stage NSCLC: Interim analysis of a global real-world study Journal of Clinical Oncology, 2022, 40, e18803-e18803.	1.6	1
208	Evaluation of dose variation to normal and critical structures for lung hypofractionated stereotactic body radiation therapy. Practical Radiation Oncology, 2012, 2, e15-e21.	2.1	0
209	In Reply to Song et al. International Journal of Radiation Oncology Biology Physics, 2017, 99, 1311-1312.	0.8	0
210	ASO Author Reflections: Predicting Early Recurrence After Trimodality Therapy for Esophageal Adenocarcinoma. Annals of Surgical Oncology, 2018, 25, 964-965.	1.5	0
211	Multi-institutional Evaluation of Curative Intent Chemoradiotherapy for Patients With Clinical T1N0 Esophageal Adenocarcinoma. Advances in Radiation Oncology, 2020, 5, 951-958.	1.2	0
212	Authors' Reply to Yajing Du's Letter to the Editor on "Biologically Effective Dose in Stereotactic Body Radiotherapy and Survival for Patients With Early-Stage NSCLC― Journal of Thoracic Oncology, 2020, 15, e166-e168.	1.1	0
213	Circulating tumor DNA as a non-invasive tool to identify patients at risk for recurrence after chemoradiotherapy in stage III non-small cell lung cancer Journal of Clinical Oncology, 2016, 34, 8553-8553.	1.6	Ο
214	In vivo imaging and quantification of oxygen tension within solid tumor Journal of Clinical Oncology, 2016, 34, e23154-e23154.	1.6	0
215	Training and validation study for sequential monitoring of CAMLs in circulation to predict ongoing progression in lung cancer patients undergoing definitive radiotherapy Journal of Clinical Oncology, 2019, 37, 3053-3053.	1.6	0
216	Effect of high flow oxygen on exertional dyspnea in cancer patients: A double-blind randomized clinical trial Journal of Clinical Oncology, 2019, 37, 11600-11600.	1.6	0

#	Article	IF	CITATIONS
217	Nationwide shift in patterns of prophylactic cranial irradiation utilization for extensive-stage small cell lung cancer patients Journal of Clinical Oncology, 2019, 37, e20099-e20099.	1.6	0
218	Active Surveillance for Early Stage Lung Cancer. Clinical Lung Cancer, 2022, , .	2.6	0
219	Prolonged neutrophilia is associated with worse outcomes after Esophagectomy. Ecological Management and Restoration, 2021, , .	0.4	0
220	In Reply to Chow and Simone. International Journal of Radiation Oncology Biology Physics, 2022, 113, 236-237.	0.8	0
221	Proton beam radiotherapy for esophageal cancer: challenges and opportunities in the modern era. Precision Radiation Oncology, 0, , .	1.1	0
222	Deep learning signature from chest CT and association with immunotherapy outcomes in EGFR/ALK-negative NSCLC Journal of Clinical Oncology, 2022, 40, 9061-9061.	1.6	0
223	Real-world effectiveness of immune checkpoint inhibitors alone or in combination with chemotherapy in metastatic non–small cell lung cancer Journal of Clinical Oncology, 2022, 40, 9055-9055.	1.6	0
224	Monitoring PD-L1 expression on circulating stromal cells in blood predicts PFS and OS in patients with metastatic NSCLC treated with PD-L1/PD-1 immunotherapy Journal of Clinical Oncology, 2022, 40, 8535-8535.	1.6	0
225	Monitoring engorgement of phagocytic circulating stromal cells during chemo-radiotherapy induction predicts survival in unresectable stage 2/3 NSCLC Journal of Clinical Oncology, 2022, 40, 3054-3054.	1.6	0