Toshihiko Aki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293264/publications.pdf Version: 2024-02-01

Τοςμιμικό Δκι

#	Article	IF	CITATIONS
1	The Role of Peroxiredoxins in the Regulation of Sepsis. Antioxidants, 2022, 11, 126.	5.1	3
2	Inverse regulation of GSDMD and GSDME gene expression during LPS-induced pyroptosis in RAW264.7 macrophage cells. Apoptosis: an International Journal on Programmed Cell Death, 2022, 27, 14-21.	4.9	14
3	Role of Mitochondrial Dynamics in Cocaine's Neurotoxicity. International Journal of Molecular Sciences, 2022, 23, 5418.	4.1	8
4	Sustained splenic contraction after daily cocaine administration in rats. PLoS ONE, 2021, 16, e0252853.	2.5	3
5	Oxcarbazepine induces mitotic catastrophe and apoptosis in NRK-52E proximal tubular cells. Toxicology Letters, 2021, 350, 240-248.	0.8	4
6	Possible roles of AMPK and macropinocytosis in the defense responses against Δ9-THC toxicity on HL-1 cardiomyocytes. Toxicology Reports, 2021, 8, 980-987.	3.3	4
7	Cell Death and Survival Pathways Involving ATM Protein Kinase. Genes, 2021, 12, 1581.	2.4	9
8	Altered cardiac mitochondrial dynamics and biogenesis in rat after short-term cocaine administration. Scientific Reports, 2021, 11, 24129.	3.3	7
9	Pyroptotic cell death by exposure to 1-butanol in H9c2 cardiomyoblastoma cells. Heliyon, 2020, 6, e05503.	3.2	2
10	Extracellular glucose is crucially involved in the fate decision of LPS-stimulated RAW264.7 murine macrophage cells. Scientific Reports, 2020, 10, 10581.	3.3	35
11	Chemically Induced Models of Parkinson's Disease: History and Perspectives for the Involvement of Ferroptosis. Frontiers in Cellular Neuroscience, 2020, 14, 581191.	3.7	27
12	Repeated exposure of cocaine alters mitochondrial dynamics in mouse neuroblastoma Neuro2a. NeuroToxicology, 2019, 75, 70-77.	3.0	13
13	Hydrogen sulfide donor NaHS causes bronchitis with enhanced respiratory secretion in rats. Journal of Toxicological Sciences, 2019, 44, 107-112.	1.5	6
14	Increased circulating peroxiredoxin-4 in sepsis model rats involves secretion from hepatocytes and is mitigated by GYY4137. Journal of Toxicologic Pathology, 2019, 32, 305-310.	0.7	3
15	Formation of high molecular weight p62 by CORM-3. PLoS ONE, 2019, 14, e0210474.	2.5	12
16	The down-regulation of cardiac contractile proteins underlies myocardial depression during sepsis and is mitigated by carbon monoxide. Biochemical and Biophysical Research Communications, 2018, 495, 1668-1674.	2.1	7
17	Interaction of carbon monoxide-releasing ruthenium carbonyl CORM-3 with plasma fibronectin. Toxicology in Vitro, 2018, 50, 201-209.	2.4	19
18	Necrosis in human neuronal cells exposed to paraquat. Journal of Toxicological Sciences, 2018, 43, 193-202.	1.5	9

Тознініко Акі

#	Article	IF	CITATIONS
19	A CO-releasing molecule prevents annexin A2 down-regulation and associated disorders in LPS-administered rat lung. Biochemical and Biophysical Research Communications, 2017, 487, 748-754.	2.1	8
20	Ataxia telangiectasia and rad3 related (ATR)-promyelocytic leukemia protein (PML) pathway of the DNA damage response in the brain of rats administered arsenic trioxide. Journal of Toxicologic Pathology, 2017, 30, 333-337.	0.7	3
21	Restoration of YAP activation rescues HL-1 cardiomyocytes from apoptotic death by ethanol. Journal of Toxicological Sciences, 2017, 42, 545-551.	1.5	2
22	Emerging roles of mitochondria and autophagy in liver injury during sepsis. Cell Stress, 2017, 1, 79-89.	3.2	17
23	Increased MFG-E8 expression and its implications in the vascular pathophysiology of cocaine abuse. Journal of Toxicologic Pathology, 2016, 29, 131-138.	0.7	5
24	Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation. Journal of Biological Chemistry, 2016, 291, 25050-25065.	3.4	20
25	Paraquat Induces Epithelial-Mesenchymal Transition-Like Cellular Response Resulting in Fibrogenesis and the Prevention of Apoptosis in Human Pulmonary Epithelial Cells. PLoS ONE, 2015, 10, e0120192.	2.5	38
26	Lipopolysaccharide induces expression of collagen VI in the rat lung. Journal of Toxicologic Pathology, 2015, 28, 37-41.	0.7	12
27	Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy, 2015, 11, 1520-1536.	9.1	61
28	Regulated necrosis and its implications in toxicology. Toxicology, 2015, 333, 118-126.	4.2	40
29	Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS ONE, 2015, 10, e0136952.	2.5	10
30	Activation of Master Autophagy Regulator TFEB During Systemic LPS Administration in the Cornea. Journal of Toxicologic Pathology, 2014, 27, 153-158.	0.7	11
31	Activation of the ubiquitin–proteasome system against arsenic trioxide cardiotoxicity involves ubiquitin ligase Parkin for mitochondrial homeostasis. Toxicology, 2014, 322, 43-50.	4.2	26
32	Impairment of autophagy: From hereditary disorder to drug intoxication. Toxicology, 2013, 311, 205-215.	4.2	35
33	Rho-Kinase Inhibitor Y-27632 Attenuates Arsenic Trioxide Toxicity in H9c2 Cardiomyoblastoma Cells. Cardiovascular Toxicology, 2013, 13, 267-277.	2.7	16
34	Distinct effects of methamphetamine on autophagy–lysosome and ubiquitin–proteasome systems in HL-1 cultured mouse atrial cardiomyocytes. Toxicology, 2013, 312, 74-82.	4.2	27
35	Elimination and active extrusion of liver mitochondrial proteins during lipopolysaccharide administration in rat. Hepatology Research, 2013, 43, 526-534.	3.4	12
36	Inducer of heme oxygenaseâ€1 cobalt protoporphyrin accelerates autophagy and suppresses oxidative damages during lipopolysaccharide treatment in rat liver. Hepatology Research, 2013, 43, 91-96.	3.4	37

Тознініко Акі

#	Article	IF	CITATIONS
37	Lysosome vacuolation disrupts the completion of autophagy during norephedrine exposure in SH-SY5Y human neuroblastoma cells. Brain Research, 2013, 1490, 9-22.	2.2	16
38	Cobalt Protoporphyrin Accelerates TFEB Activation and Lysosome Reformation during LPS-Induced Septic Insults in the Rat Heart. PLoS ONE, 2013, 8, e56526.	2.5	35
39	Critical roles of Rho-associated kinase in membrane blebbing and mitochondrial pathway of apoptosis caused by 1-butanol. Toxicology in Vitro, 2012, 26, 849-855.	2.4	13
40	Cytoplasmic vacuolization during exposure to drugs and other substances. Cell Biology and Toxicology, 2012, 28, 125-131.	5.3	89
41	Hyperstimulation of macropinocytosis leads to lysosomal dysfunction during exposure to methamphetamine in SH-SY5Y cells. Brain Research, 2012, 1466, 1-14.	2.2	33
42	Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicology in Vitro, 2011, 25, 1581-1587.	2.4	27
43	Methamphetamine induces macropinocytosis in differentiated SH-SY5Y human neuroblastoma cells. Brain Research, 2010, 1352, 1-10.	2.2	38
44	Bifurcate effects of glucose on caspase-independent cell death during hypoxia. Biochemical and Biophysical Research Communications, 2010, 396, 614-618.	2.1	3
45	Protein kinase C-Îμ protects PC12 cells against methamphetamine-induced death: possible involvement of suppression of glutamate receptor. Life Sciences, 2003, 72, 1595-1607.	4.3	21
46	Phosphoinositide 3-kinase accelerates necrotic cell death during hypoxia. Biochemical Journal, 2001, 358, 481.	3.7	19
47	Phosphoinositide 3-kinase accelerates necrotic cell death during hypoxia. Biochemical Journal, 2001, 358, 481-487.	3.7	33