List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9293071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained endosomal release of a neurokinin-1 receptor antagonist from nanostars provides long-lasting relief of chronic pain. Biomaterials, 2022, 285, 121536.	11.4	16

 $_{2}$ Iodocyclisation of Electronically Resistant Alkynes: Synthesis of 2-Carboxy (and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{0.9}^{50}$ 702 Td₅(sulfoxy)-3

3	Attenuating PI3K/Akt- mTOR pathway reduces dihydrosphingosine 1 phosphate mediated collagen synthesis and hypertrophy in primary cardiac cells. International Journal of Biochemistry and Cell Biology, 2021, 134, 105952.	2.8	18
4	Selective Synthesis of <i>C</i> ₁ -Symmetric BINOL-phosphates and P-chiral Phosphoramides Using Directed <i>ortho</i> -Lithiation. Organic Letters, 2021, 23, 7055-7058.	4.6	6
5	The effect of dihydroceramide desaturase 1 inhibition on endothelial impairment induced by indoxyl sulfate. Vascular Pharmacology, 2021, 141, 106923.	2.1	4
6	Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicology Letters, 2021, 350, 133-142.	0.8	7
7	Polyynes to Polycycles: Domino Reactions Forming Polyfused Chalcogenophenes. Organic Letters, 2020, 22, 2987-2990.	4.6	15
8	Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1. Cellular Signalling, 2020, 72, 109629.	3.6	15
9	Formation of Highly Substituted Indenes through Acid Promoted Cyclodehydration with Nucleophile Incorporation. Journal of Organic Chemistry, 2019, 84, 2756-2767.	3.2	5
10	The role of dihydrosphingolipids in disease. Cellular and Molecular Life Sciences, 2019, 76, 1107-1134.	5.4	31
11	Asymmetric synthesis of multiple quaternary stereocentre-containing cyclopentyls by oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644-4649.	7.4	17
11		7.4	17
	oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644-4649. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome.		
12	oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644-4649. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447. Mechanisms of Carbonyl Activation by BINOL <i>N</i>	7.1	128
12 13	 oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644-4649. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447. Mechanisms of Carbonyl Activation by BINOL <i>N</i>-Triflylphosphoramides: Enantioselective Nazarov Cyclizations. ACS Catalysis, 2017, 7, 3466-3476. Multistereocenter-Containing Cyclopentanoids from Ynamides via Oxazolidinone-Controlled Nazarov 	7.1 11.2	128 25
12 13 14	 oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644-4649. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447. Mechanisms of Carbonyl Activation by BINOL <i>N</i>-Triflylphosphoramides: Enantioselective Nazarov Cyclizations. ACS Catalysis, 2017, 7, 3466-3476. Multistereocenter-Containing Cyclopentanoids from Ynamides via Oxazolidinone-Controlled Nazarov Cyclization. Journal of Organic Chemistry, 2017, 82, 6511-6527. Linear and Angular Heteroacenes from Double-Electrophilic Cyclization (DEC) and DEC-Reductive 	7.1 11.2 3.2	128 25 26
12 13 14 15	 oxazolidinone-promoted Nazarov cyclizations. Chemical Science, 2018, 9, 4644 4649. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447. Mechanisms of Carbonyl Activation by BINOL <i>N</i>-Triflylphosphoramides: Enantioselective Nazarov Cyclizations. ACS Catalysis, 2017, 7, 3466-3476. Multistereocenter-Containing Cyclopentanoids from Ynamides via Oxazolidinone-Controlled Nazarov Cyclization. Journal of Organic Chemistry, 2017, 82, 6511-6527. Linear and Angular Heteroacenes from Double-Electrophilic Cyclization (DEC) and DEC-Reductive Elimination of Diynes. Organic Letters, 2017, 19, 1939-1941. Electrophilic Activation of P-Alkynes in the Synthesis of P-Substituted and P-Centered Heterocycles. 	7.1 11.2 3.2 4.6	128 25 26 25

#	Article	IF	CITATIONS
19	Studies Towards a Concise Enantioselective Synthesis of Roseophilins. Australian Journal of Chemistry, 2015, 68, 1821.	0.9	4
20	Convergent Access to Polycyclic Cyclopentanoids from α,β-Unsaturated Acid Chlorides and Alkynes through a Reductive Coupling, Nazarov Cyclization Sequence. Journal of Organic Chemistry, 2014, 79, 3659-3664.	3.2	8
21	Synthesis of Thienoâ€Fused Heterocycles through Reiterative Iodocyclization. Advanced Synthesis and Catalysis, 2014, 356, 1974-1978.	4.3	36
22	Asymmetric Synthesis of (+)- and (â^')-Pauciflorol F: Confirmation of Absolute Stereochemistry. Organic Letters, 2013, 15, 4118-4121.	4.6	47
23	Scaffold-Divergent Synthesis of Ring-Fused Indoles, Quinolines, and Quinolones via Iodonium-Induced Reaction Cascades. Journal of Organic Chemistry, 2013, 78, 4708-4718.	3.2	28
24	Opposing Auxiliary Conformations Produce the Same Torquoselectivity in an Oxazolidinone-Directed Nazarov Cyclization. Journal of the American Chemical Society, 2013, 135, 9156-9163.	13.7	43
25	Tumour targeting of Auger emitters using DNA ligands conjugated to octreotate. International Journal of Radiation Biology, 2012, 88, 1009-1018.	1.8	8
26	Oxazolidinone-Promoted, Torquoselective Nazarov Cyclizations. Organic Letters, 2012, 14, 1732-1735.	4.6	52
27	A New Approach to Highly Substituted Cyclopentanoids from a Concise Formal Synthesis of (+)-Roseophilin. Organic Letters, 2012, 14, 1740-1743.	4.6	25
28	Discovery of 7-Hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[<i>b</i>]furan (BNC105), a Tubulin Polymerization Inhibitor with Potent Antiproliferative and Tumor Vascular Disrupting Properties. Journal of Medicinal Chemistry, 2011, 54, 6014-6027.	6.4	133
29	New methodology for the N-alkylation of 2-amino-3-acylthiophenes. Organic and Biomolecular Chemistry, 2011, 9, 4886.	2.8	6
30	The evaluation of solution- and solid-phase approaches to the divergent synthesis cinnoline and phenanthrene ring systems. Molecular Diversity, 2011, 15, 83-89.	3.9	6
31	The synthesis and biological evaluation of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes as allosteric modulators of the A1 adenosine receptor. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3704-3707.	2.2	26
32	Richter cyclization and co-cyclization reactions of triazene-masked diazonium ions. Tetrahedron Letters, 2010, 51, 6882-6885.	1.4	45
33	BNC105: A Novel Tubulin Polymerization Inhibitor That Selectively Disrupts Tumor Vasculature and Displays Single-Agent Antitumor Efficacy. Molecular Cancer Therapeutics, 2010, 9, 1562-1573.	4.1	72
34	A Reductive-Coupling plus Nazarov Cyclization Sequence in the Asymmetric Synthesis of Five-Membered Carbocycles. Journal of Organic Chemistry, 2010, 75, 7073-7084.	3.2	44
35	Effects of Conformational Restriction of 2-Amino-3-benzoylthiophenes on A ₁ Adenosine Receptor Modulation. Journal of Medicinal Chemistry, 2010, 53, 6550-6559.	6.4	31
36	An efficient synthesis of (±)-frondosin B using a Stille–Heck reaction sequence. Organic and Biomolecular Chemistry, 2010, 8, 1290.	2.8	30

#	Article	IF	CITATIONS
37	3- and 6-Substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as A1 adenosine receptor allosteric modulators and antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 7353-7361.	3.0	41
38	Allosteric Modulators of the Adenosine A ₁ Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes. Journal of Medicinal Chemistry, 2009, 52, 4543-4547.	6.4	124
39	Reaction Pathways to 2-Aminothiophenes and Thiophene-3-carbonitriles. Australian Journal of Chemistry, 2009, 62, 402.	0.9	6
40	5-Substituted 2-aminothiophenes as A1 adenosine receptor allosteric enhancers. Bioorganic and Medicinal Chemistry, 2008, 16, 1319-1327.	3.0	47
41	Synthesis and biological evaluation of chalcones as inhibitors of the voltage-gated potassium channel Kv1.3. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2055-2061.	2.2	25
42	2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists. Journal of Medicinal Chemistry, 2008, 51, 6165-6172.	6.4	54
43	Alternating Iodonium-Mediated Reaction Cascades Giving Indole- And Quinoline-Containing Polycycles. Organic Letters, 2008, 10, 1967-1970.	4.6	68
44	A Concise Approach to the Polycyclic Scaffold of Frondosin D. Journal of Organic Chemistry, 2008, 73, 8081-8084.	3.2	17
45	An Efficient Synthesis and Substitution of 3-Aroyl-2-bromobenzo[<i>b</i>]furans. Journal of Organic Chemistry, 2008, 73, 1131-1134.	3.2	48
46	The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4. Bioorganic and Medicinal Chemistry, 2007, 15, 3290-3298.	3.0	84
47	Selective endo and exo lodocyclizations in the Synthesis of Quinolines and Indoles. Organic Letters, 2006, 8, 243-246.	4.6	117
48	Solid-Phase Synthesis of 2,3-Disubstituted Benzo[b]thiophenes and Benzo[b]selenophenes. ACS Combinatorial Science, 2006, 8, 163-167.	3.3	56
49	A PRACTICAL METHOD FOR PHOSPHORYLATION OF COMBRETASTATIN A-4 WITH PHOSPHORUS OXYCHLORIDE. Organic Preparations and Procedures International, 2006, 38, 604-608.	1.3	2
50	Fromα,β-Unsaturated Fischer Carbene Complexes to Highly Substituted 3-Ethoxycyclopentadienes, Masked Cyclopentenones. European Journal of Organic Chemistry, 2004, 2004, 724-748.	2.4	37
51	Multicomponent Coupling Approach to (±)-Frondosin B and a Ring-Expanded Analogue. Organic Letters, 2004, 6, 457-460.	4.6	76
52	A Convenient Two Step Protocol for the Synthesis of Cyclopentenones and Indanones, Including an Asymmetric Variant ChemInform, 2003, 34, no.	0.0	1
53	A convenient two step protocol for the synthesis of cyclopentenones and indanones, including an asymmetric variantElectronic supplementary information (ESI) available: synthetic procedures and spectral data for all compounds 7 and 8. See http://www.rsc.org/suppdata/cc/b2/b211845a/. Chemical Communications, 2003., 1380.	4.1	58
54	lodine-Induced Reaction Cascades for the Rapid Construction of Variously Substituted Benzothiophenesâ€. Organic Letters, 2003, 5, 4377-4380.	4.6	167

#	Article	IF	CITATIONS
55	An enantioselective double Diels–Alder approach to the tetracyclic framework of colombiasin A. Organic and Biomolecular Chemistry, 2003, 1, 1842-1844.	2.8	20
56	One-Pot Synthesis of Benzo[b]furan and Indole Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2002, 45, 2670-2673.	6.4	244
57	Highly Functionalized Five-Membered Carbocycles from (3-Dialkylamino-1-ethoxyalkenylidene)pentacarbonylchromium Complexes and Alkynes:Â The Effects of Substituents, Solvents, Ligand Additives, and Reagent Concentrations on the Product Distribution. Iournal of Organic Chemistry. 2001. 66. 1747-1754.	3.2	28
58	A multi-component coupling approach to benzo[b]furans and indoles. Chemical Communications, 2001, , 1594-1595.	4.1	55
59	A Novel Palladium-Mediated Coupling Approach to 2,3-Disubstituted Benzo[b]thiophenes and Its Application to the Synthesis of Tubulin Binding Agents. Organic Letters, 2001, 3, 651-654.	4.6	214
60	The synthesis and tubulin binding activity of thiophene-based analogues of combretastatin A-4. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2341-2343.	2.2	135
61	Three Molecules of an Arylalkyne Reacting with a β-Amino-Substituted α,β-Unsaturated Fischer Carbene Complex to Give Highly Substituted Spiro[4.4]nonatrienes. Tetrahedron, 2000, 56, 4977-4984.	1.9	16
62	Assessment of Double-Barrelled Heck Cyclizations as a Means for Construction of the 14-Phenyl-8,9-dihydro- 6H-[1]benzopyrano[4 $\hat{a}\in^2$,3 $\hat{a}\in^2$:4,5]pyrrolo[2,1-a]isoquinolin- 6-one Core Associated with Certain Members of the Lamellarin Class of Marine Natural Product. Australian Journal of Chemistry, 1999, 52, 755.	0.9	41
63	Synthesis, X-Ray Crystal Structure and Tubulin- Binding Properties of a Benzofuran Analogue of the Potent Cytotoxic Agent Combretastatin A4. Australian Journal of Chemistry, 1999, 52, 767.	0.9	20
64	An Efficient Synthesis of Bicyclo[3.3.0]oct-2-en-4-ones and 2-Azabicyclo[3.3.0]oct-7-en-6-ones via β-Amino-Substituted α,β-Unsaturated Fischer Carbene Complexes. European Journal of Organic Chemistry, 1999, 1999, 2025-2031.	2.4	9
65	Unprecedented Regio- and Stereoselective Conversion of 1-Cyclopropyl-3-ethoxycyclopentadienes to 3-(E)-Alkylidenecyclopentenes. Journal of Organic Chemistry, 1999, 64, 400-404.	3.2	13
66	Selective Cleavage of Isopropyl Aryl Ethers by Aluminum Trichlorideâ€. Journal of Organic Chemistry, 1998, 63, 9139-9144.	3.2	74
67	Selective [3+2] Cycloadditions of β-Amino-α,β-unsaturated Pentacarbonylcarbenechromium Complexes to Alkynes - A New Approach to Functionally Substituted Cyclopentadienes. Synlett, 1995, 1995, 1007-1010.	1.8	28
68	Selective Formation of 4-Ethoxy-5-methylene-2-cyclopentenones and 3-Ethoxy-2-(1'-morpholinoalkenyl)-2-cyclopentenones from (1-Ethoxy-3-morpholino-alkenylidene)pentacarbonylchromium Complexes and Terminal Alkynes - A Short Enantioselective Synthesis of the Hypotensive Oudenone. Synlett, 1995, 1995, 812-814.	1.8	19
69	Approaches to sugar modified 5-trifluoromethanesulfonylpyrimidine nucleosides. Tetrahedron, 1993, 49, 5873-5890.	1.9	14
70	Palladium-catalyzed coupling of terminal alkynes with 5-(trifluoromethanesulfonyloxy)pyrimidine nucleosides. Journal of Organic Chemistry, 1993, 58, 6614-6619.	3.2	82
71	Synthesis of Modified Nucleosides. Palladium-Catalysed Couplings of Organostannanes or Organoboranes with Pyrimidine Nucleosides. Nucleosides & Nucleotides, 1991, 10, 763-779.	0.5	20
72	Palladium-catalysed coupling of uridine triflate with organostannanes Tetrahedron Letters, 1990, 31, 1347-1350.	1.4	31