
Hailiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9292598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011, 10, 780-786.	27.5	5,120
2	MoS ₂ Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2011, 133, 7296-7299.	13.7	4,572
3	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	13.7	2,498
4	N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science, 2009, 324, 768-771.	12.6	2,020
5	Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 2011, 11, 2644-2647.	9.1	1,973
6	Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. Journal of the American Chemical Society, 2011, 133, 6825-6831.	13.7	1,897
7	Ni(OH) ₂ Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 2010, 132, 7472-7477.	13.7	1,865
8	Mn ₃ O ₄ â^`Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. Journal of the American Chemical Society, 2010, 132, 13978-13980.	13.7	1,849
9	Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. Journal of the American Chemical Society, 2009, 131, 15939-15944.	13.7	1,673
10	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	31.5	1,533
11	Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors. Physical Review Letters, 2008, 100, 206803.	7.8	1,345
12	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	13.7	1,266
13	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	12.8	976
14	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	13.7	856
15	Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society, 2009, 131, 9910-9911.	13.7	823
16	Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 2013, 42, 3088.	38.1	795
17	Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 2010, 5, 321-325.	31.5	757
18	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	13.7	747

#	Article	lF	CITATIONS
19	TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Research, 2010, 3, 701-705.	10.4	693
20	Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature, 2019, 575, 639-642.	27.8	658
21	Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nature Communications, 2017, 8, 14675.	12.8	618
22	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
23	Nanocrystal Growth on Graphene with Various Degrees of Oxidation. Journal of the American Chemical Society, 2010, 132, 3270-3271.	13.7	499
24	High performance in vivo near-IR (>1 $^{1}\!4$ m) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3, 779-793.	10.4	475
25	In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 6337-6343.	13.7	475
26	Singleâ€Crystalline Ultrathin Co ₃ O ₄ Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced Energy Materials, 2018, 8, 1701694.	19.5	451
27	Electrochemical CO ₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 8076-8079.	13.7	450
28	A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7, 10771.	12.8	418
29	Co _{1â^'<i>x</i>} S–Graphene Hybrid: A Highâ€Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction. Angewandte Chemie - International Edition, 2011, 50, 10969-10972.	13.8	413
30	Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy and Environmental Science, 2012, 5, 7931.	30.8	393
31	Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 1455-1459.	13.7	393
32	Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Research, 2011, 4, 729-736.	10.4	390
33	Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 2020, 5, 684-692.	39.5	365
34	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	12.8	347
35	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
36	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	30.8	265

#	Article	IF	CITATIONS
37	LiMn _{1â^'<i>x</i>} Fe _{<i>x</i>} PO ₄ Nanorods Grown on Graphene Sheets for Ultrahighâ€Rateâ€Performance Lithium Ion Batteries. Angewandte Chemie - International Edition, 2011, 50, 7364-7368.	13.8	262
38	Ternary Hybrid Material for High-Performance Lithium–Sulfur Battery. Journal of the American Chemical Society, 2015, 137, 12946-12953.	13.7	253
39	Metal/Oxide Interface Nanostructures Generated by Surface Segregation for Electrocatalysis. Nano Letters, 2015, 15, 7704-7710.	9.1	233
40	Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature Communications, 2011, 2, 466.	12.8	221
41	Controlled Chlorine Plasma Reaction for Noninvasive Graphene Doping. Journal of the American Chemical Society, 2011, 133, 19668-19671.	13.7	211
42	High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5676-5680.	7.1	209
43	Ironâ€Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	14.9	206
44	Graphene nanoribbons with smooth edges behave as quantum wires. Nature Nanotechnology, 2011, 6, 563-567.	31.5	197
45	Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nature Sustainability, 2021, 4, 725-730.	23.7	176
46	Single Microwire Transistors of Oligoarenes by Direct Solution Process. Journal of the American Chemical Society, 2007, 129, 12386-12387.	13.7	173
47	Graphene Nanoribbons from Unzipped Carbon Nanotubes: Atomic Structures, Raman Spectroscopy, and Electrical Properties. Journal of the American Chemical Society, 2011, 133, 10394-10397.	13.7	170
48	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. Angewandte Chemie - International Edition, 2018, 57, 15549-15552.	13.8	166
49	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
50	One-Step Synthesis of MoS ₂ /WS ₂ Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films. ACS Nano, 2016, 10, 2004-2009.	14.6	164
51	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	7.4	164
52	In Situ Observation of the pH Gradient near the Gas Diffusion Electrode of CO ₂ Reduction in Alkaline Electrolyte. Journal of the American Chemical Society, 2020, 142, 15438-15444.	13.7	154
53	The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO ₂ Electrochemical Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 11368-11379.	3.1	147
54	Strong Metal–Phosphide Interactions in Core–Shell Geometry for Enhanced Electrocatalysis. Nano Letters, 2017, 17, 2057-2063.	9.1	145

#	Article	IF	CITATIONS
55	Highâ€Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie - International Edition, 2018, 57, 9069-9072.	13.8	144
56	Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Research, 2017, 10, 1732-1739.	10.4	139
57	Integrating Rh Species with NiFe-Layered Double Hydroxide for Overall Water Splitting. Nano Letters, 2020, 20, 136-144.	9.1	129
58	Accessing Organonitrogen Compounds via C–N Coupling in Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 19630-19642.	13.7	129
59	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126
60	CO2 doping of organic interlayers for perovskite solar cells. Nature, 2021, 594, 51-56.	27.8	120
61	High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Research, 2017, 10, 3698-3705.	10.4	116
62	Element-Specific Restructuring of Anion- and Cation-Substituted Cobalt Phosphide Nanoparticles under Electrochemical Water-Splitting Conditions. ACS Catalysis, 2019, 9, 2956-2961.	11.2	107
63	Metal-Enhanced Fluorescence of Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 15920-15923.	13.7	105
64	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	10.4	104
65	Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO ₂ Reduction Reactions. Accounts of Chemical Research, 2021, 54, 3149-3159.	15.6	102
66	Controlled Synthesis of Ag ₂ S, Ag ₂ Se, and Ag Nanofibers by Using a General Sacrificial Template and Their Application in Electronic Device Fabrication. Advanced Functional Materials, 2008, 18, 1249-1256.	14.9	100
67	Influence of Size-Induced Oxidation State of Platinum Nanoparticles on Selectivity and Activity in Catalytic Methanol Oxidation in the Gas Phase. Nano Letters, 2013, 13, 2976-2979.	9.1	99
68	Ultrathin dendrimer–graphene oxide composite film for stable cycling lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3578-3583.	7.1	90
69	High-Performance Electrochemical CO ₂ Reduction Cells Based on Non-noble Metal Catalysts. ACS Energy Letters, 2018, 3, 2527-2532.	17.4	90
70	Materials Chemistry of Iron Phosphosulfide Nanoparticles: Synthesis, Solid State Chemistry, Surface Structure, and Electrocatalysis for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 4026-4032.	11.2	89
71	Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 14222-14227.	3.1	86
72	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	21.0	86

#	Article	IF	CITATIONS
73	Synthesis of Crystalline Black Phosphorus Thin Film on Sapphire. Advanced Materials, 2018, 30, 1703748.	21.0	86
74	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
75	RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS ONE, 2017, 12, e0173238.	2.5	85
76	A New Approach to Solutionâ€Phase Gold Seeding for SERS Substrates. Small, 2011, 7, 499-505.	10.0	83
77	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 28519-28526.	8.0	83
78	Chemical self-assembly of graphene sheets. Nano Research, 2009, 2, 336-342.	10.4	80
79	Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.	10.4	80
80	Nearâ€Infraredâ€Fluorescenceâ€Enhanced Molecular Imaging of Live Cells on Gold Substrates. Angewandte Chemie - International Edition, 2011, 50, 4644-4648.	13.8	78
81	Enhancing far-field thermal emission with thermal extraction. Nature Communications, 2013, 4, 1730.	12.8	77
82	Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nature Communications, 2012, 3, 700.	12.8	76
83	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	17.4	76
84	Activating Copper for Electrocatalytic CO ₂ Reduction to Formate via Molecular Interactions. ACS Catalysis, 2020, 10, 9271-9275.	11.2	75
85	Elucidating Surface Restructuring-Induced Catalytic Reactivity of Cobalt Phosphide Nanoparticles under Electrochemical Conditions. Journal of Physical Chemistry C, 2018, 122, 2848-2853.	3.1	74
86	A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie - International Edition, 2020, 59, 14003-14008.	13.8	70
87	An Integrated CO ₂ Electrolyzer and Formate Fuel Cell Enabled by a Reversibly Restructuring Pb–Pd Bimetallic Catalyst. Angewandte Chemie - International Edition, 2019, 58, 4031-4035.	13.8	64
88	Electrocatalysis in Lithium Sulfur Batteries under Lean Electrolyte Conditions. Angewandte Chemie, 2018, 130, 15775-15778.	2.0	63
89	Quasi-graphene-envelope Fe-doped Ni ₂ P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. Journal of Materials Chemistry A, 2015, 3, 9587-9594.	10.3	61
90	A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Science Bulletin, 2019, 64, 1890-1895.	9.0	61

#	Article	IF	CITATIONS
91	Dramatically Different Kinetics and Mechanism at Solid/Liquid and Solid/Gas Interfaces for Catalytic Isopropanol Oxidation over Size-Controlled Platinum Nanoparticles. Journal of the American Chemical Society, 2014, 136, 10515-10520.	13.7	60
92	Highâ€Performance Sodium Metal Anodes Enabled by a Bifunctional Potassium Salt. Angewandte Chemie, 2018, 130, 9207-9210.	2.0	60
93	Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Letters, 2009, 9, 3762-3765.	9.1	58
94	Copper–Gold Interactions Enhancing Formate Production from Electrochemical CO ₂ Reduction. ACS Catalysis, 2019, 9, 10894-10898.	11.2	58
95	Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS ₂ /WTe ₂ Hybrid Structures. Small, 2019, 15, e1900078.	10.0	58
96	Graphite-Coated Magnetic Nanoparticle Microarray for Few-Cells Enrichment and Detection. ACS Nano, 2012, 6, 1094-1101.	14.6	57
97	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition, 2020, 59, 7797-7802.	13.8	57
98	Roomâ€Temperature Edge Functionalization and Doping of Graphene by Mild Plasma. Small, 2011, 7, 574-577.	10.0	56
99	Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface. Nano Energy, 2020, 74, 104787.	16.0	52
100	Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. Journal of Energy Chemistry, 2022, 65, 367-370.	12.9	52
101	Electrochemical Reductive N-Methylation with CO ₂ Enabled by a Molecular Catalyst. Journal of the American Chemical Society, 2021, 143, 19983-19991.	13.7	50
102	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. Advanced Functional Materials, 2020, 30, 1907579.	14.9	49
103	Spectroscopic understanding of ultra-high rate performance for LiMn0.75Fe0.25PO4 nanorods–graphene hybrid in lithium ion battery. Physical Chemistry Chemical Physics, 2012, 14, 9578.	2.8	48
104	Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13731-13735.	10.3	48
105	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 14818-14822.	13.8	46
106	Mechanistic Insights into Fast Charging and Discharging of the Sodium Metal Battery Anode: A Comparison with Lithium. Journal of the American Chemical Society, 2021, 143, 13929-13936.	13.7	46
107	Comparing the Catalytic Oxidation of Ethanol at the Solid–Gas and Solid–Liquid Interfaces over Size-Controlled Pt Nanoparticles: Striking Differences in Kinetics and Mechanism. Nano Letters, 2014, 14, 6727-6730.	9.1	45
108	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467.	3.1	45

#	Article	IF	CITATIONS
109	Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research, 2013, 6, 113-120.	10.4	42
110	Hydrogen on Cobalt Phosphide. Journal of the American Chemical Society, 2019, 141, 15390-15402.	13.7	41
111	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 10918-10923.	13.8	40
112	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
113	Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 8641-8648.	13.7	38
114	Heterogeneous Nature of Electrocatalytic CO/CO ₂ Reduction by Cobalt Phthalocyanines. ChemSusChem, 2020, 13, 6296-6299.	6.8	37
115	Effects of Nanoparticle Size and Metal/Support Interactions in Pt-Catalyzed Methanol Oxidation Reactions in Gas and Liquid Phases. Catalysis Letters, 2014, 144, 1930-1938.	2.6	34
116	Solid solution nitride/carbon nanotube hybrids enhance electrocatalysis of oxygen in zinc-air batteries. Energy Storage Materials, 2018, 15, 380-387.	18.0	32
117	Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries. Nano Research, 2020, 13, 3230-3234.	10.4	32
118	Imaging state of charge and its correlation to interaction variation in an LiMn0.75Fe0.25PO4 nanorods–graphene hybrid. Chemical Communications, 2013, 49, 1765.	4.1	31
119	A switchable pH-differential unitized regenerative fuel cell with high performance. Journal of Power Sources, 2016, 314, 76-84.	7.8	28
120	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
121	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	18.0	25
122	High Performance Metal Oxide–Graphene Hybrid Nanomaterials Synthesized via Oppositeâ€Polarity Electrosprays. Advanced Materials, 2016, 28, 10298-10303.	21.0	24
123	A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 11788-11793.	10.3	23
124	Formation and Evolution of Lithium Metal Anode–Carbonate Electrolyte Interphases. , 2019, 1, 254-259.		23
125	Promotion of Hydrogenation of Organic Molecules by Incorporating Iron into Platinum Nanoparticle Catalysts: Displacement of Inactive Reaction Intermediates. ACS Catalysis, 2013, 3, 2371-2375.	11.2	22
126	Influence of surface capping on oxygen reduction catalysis: A case study of 1.7 nm Pt nanoparticles. Surface Science, 2016, 648, 120-125.	1.9	22

#	Article	IF	CITATIONS
127	A Targeted Functional Design for Highly Efficient and Stable Cathodes for Rechargeable Liâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1604903.	14.9	22
128	Surface oxidation of transition metal sulfide and phosphide nanomaterials. Nano Research, 2021, 14, 2264.	10.4	21
129	Intrinsic Catalytic Activity of Carbon Nanotubes for Electrochemical Nitrate Reduction. ACS Catalysis, 2022, 12, 9135-9142.	11.2	20
130	Structure and Electrocatalytic Reactivity of Cobalt Phosphosulfide Nanomaterials. Topics in Catalysis, 2018, 61, 958-964.	2.8	18
131	Controlled nanoparticle synthesis via opposite-polarity electrospray pyrolysis. Journal of Aerosol Science, 2017, 113, 201-211.	3.8	17
132	Bifunctional electrocatalysis for CO ₂ reduction <i>via</i> surface capping-dependent metal–oxide interactions. Chemical Communications, 2019, 55, 8864-8867.	4.1	17
133	Molecular Orientations Change Reaction Kinetics and Mechanism: A Review on Catalytic Alcohol Oxidation in Gas Phase and Liquid Phase on Size-Controlled Pt Nanoparticles. Catalysts, 2018, 8, 226.	3.5	16
134	Nearâ€Unity Molecular Doping Efficiency in Monolayer MoS ₂ . Advanced Electronic Materials, 2021, 7, 2000873.	5.1	16
135	Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 2265-2272.	17.4	15
136	Mobility on the reconstructed Pt(100)-hex surface in ethylene and in its mixture with hydrogen and carbon monoxide. Chemical Communications, 2013, 49, 6903.	4.1	12
137	Ferroceneâ€Promoted Long ycle Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 15038-15042.	2.0	11
138	An Integrated CO 2 Electrolyzer and Formate Fuel Cell Enabled by a Reversibly Restructuring Pb–Pd Bimetallic Catalyst. Angewandte Chemie, 2019, 131, 4071-4075.	2.0	11
139	Synthesis and resistivity of topological metal MoP nanostructures. APL Materials, 2020, 8, .	5.1	11
140	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	4.1	10
141	Recovery of Pt Surfaces for Ethylene Hydrogenation-Based Active Site Determination. Catalysis Letters, 2014, 144, 1151-1158.	2.6	9
142	Intrinsically high efficiency sodium metal anode. Science China Chemistry, 2020, 63, 1557-1562.	8.2	7
143	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 11010-11015.	2.0	6
144	Restructuring and integrity of molecular catalysts in electrochemical CO ₂ reduction. Natural Sciences, 2022, 2, .	2.1	5

#	Article	IF	CITATIONS
145	Hybrid material design for energy applications: impact of graphene and carbon nanotubes. Pure and Applied Chemistry, 2014, 86, 39-52.	1.9	4
146	Pb3(CO3)2(OH)2 Is an Active Phase in Electrocatalytic CO2 Reduction to Formate. Chemical Research in Chinese Universities, 2020, 36, 1145-1146.	2.6	4
147	A Highly Efficient Allâ€Solidâ€State Lithium/Electrolyte Interface Induced by an Energetic Reaction. Angewandte Chemie, 2020, 132, 14107-14112.	2.0	4
148	Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie, 2020, 132, 7871-7876.	2.0	4
149	In situ photogalvanic acceleration of optofluidic kinetics: a new paradigm for advanced photocatalytic technologies. RSC Advances, 2015, 5, 791-796.	3.6	1
150	Discovering and Utilizing Structure Sensitivity. Studies in Surface Science and Catalysis, 2017, 177, 613-641.	1.5	1
151	The Nano Research Young Innovators (NR45) Awards in nanoenergy. Nano Research, 2019, 12, 1975-1977.	10.4	1