
Qian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9291320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteopontin Gene Regulation by Oscillatory Fluid Flow via Intracellular Calcium Mobilization and Activation of Mitogen-activated Protein Kinase in MC3T3–E1 Osteoblasts. Journal of Biological Chemistry, 2001, 276, 13365-13371.	3.4	342
2	Substrate Deformation Levels Associated With Routine Physical Activity Are Less Stimulatory to Bone Cells Relative to Loading-Induced Oscillatory Fluid Flow. Journal of Biomechanical Engineering, 2000, 122, 387-393.	1.3	313
3	Mechanoregulation of Chondrocyte Proliferation, Maturation, and Hypertrophy: Ion-Channel Dependent Transduction of Matrix Deformation Signals. Experimental Cell Research, 2000, 256, 383-391.	2.6	190
4	Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature, 2013, 499, 491-495.	27.8	190
5	Stimulation of matrix metalloprotease 3 release from human chondrocytes by the interaction of stromal cell-derived factor 1 and CXC chemokine receptor 4. Arthritis and Rheumatism, 2002, 46, 130-137.	6.7	176
6	Indian hedgehog Is an Essential Component of Mechanotransduction Complex to Stimulate Chondrocyte Proliferation. Journal of Biological Chemistry, 2001, 276, 35290-35296.	3.4	157
7	Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy, 2018, 14, 1726-1741.	9.1	143
8	miR-146a, an IL-1β responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis Research and Therapy, 2012, 14, R75.	3.5	139
9	Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochemical and Biophysical Research Communications, 2006, 348, 1082-1088.	2.1	130
10	MiRâ€365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB Journal, 2011, 25, 4457-4466.	0.5	126
11	Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Osteoarthritis and Cartilage, 2012, 20, 755-763.	1.3	123
12	Progression and Recapitulation of the Chondrocyte Differentiation Program: Cartilage Matrix Protein Is a Marker for Cartilage Maturation. Developmental Biology, 1995, 172, 293-306.	2.0	111
13	Adipokines: New Therapeutic Target for Osteoarthritis?. Current Rheumatology Reports, 2019, 21, 71.	4.7	102
14	Synovectomy reduces stromal-cell-derived factor-1 (SDF-1) which is involved in the destruction of cartilage in osteoarthritis and rheumatoid arthritis. Journal of Bone and Joint Surgery: British Volume, 2004, 86-B, 296-300.	3.4	96
15	Functional Knockout of the Matrilin-3 Gene Causes Premature Chondrocyte Maturation to Hypertrophy and Increases Bone Mineral Density and Osteoarthritis. American Journal of Pathology, 2006, 169, 515-527.	3.8	95
16	Mitogen-activated Protein Kinase p38 Mediates Regulation of Chondrocyte Differentiation by Parathyroid Hormone. Journal of Biological Chemistry, 2001, 276, 4879-4885.	3.4	88
17	Disrupting the Indian hedgehog signaling pathway in vivo attenuates surgically induced osteoarthritis progression in Col2a1-CreERT2; Ihhfl/fl mice. Arthritis Research and Therapy, 2014, 16, R11.	3.5	88
18	Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice. Arthritis and Rheumatism, 2012, 64, 3982-3992.	6.7	81

#	Article	IF	CITATIONS
19	mTOR signaling contributes to chondrocyte differentiation. Developmental Dynamics, 2008, 237, 702-712.	1.8	78
20	Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4. International Journal of Molecular Sciences, 2016, 17, 436.	4.1	77
21	Evidence that miRâ€146a attenuates aging―and traumaâ€induced osteoarthritis by inhibiting Notch1, <scp>IL</scp> â€6, and <scp>IL</scp> â€1 mediated catabolism. Aging Cell, 2018, 17, e12752.	6.7	76
22	Comparison of differential biomarkers of osteoarthritis with and without posttraumatic injury in the Hartley guinea pig model. Journal of Orthopaedic Research, 2010, 28, 900-906.	2.3	72
23	CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression. Molecular Cancer, 2010, 9, 17.	19.2	71
24	Assembly of a Novel Cartilage Matrix Protein Filamentous Network: Molecular Basis of Differential Requirement of von Willebrand Factor A Domains. Molecular Biology of the Cell, 1999, 10, 2149-2162.	2.1	66
25	Identification of α ₂ â€Macroglobulin as a Master Inhibitor of Cartilageâ€Degrading Factors That Attenuates the Progression of Posttraumatic Osteoarthritis. Arthritis and Rheumatology, 2014, 66, 1843-1853.	5.6	66
26	Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Research and Therapy, 2012, 14, R177.	3.5	65
27	CXCR4-Targeted Therapy Inhibits VEGF Expression and Chondrosarcoma Angiogenesis and Metastasis. Molecular Cancer Therapeutics, 2013, 12, 1163-1170.	4.1	64
28	Insulin-like growth factor-I signaling is modified during chondrocyte differentiation. Journal of Endocrinology, 2004, 183, 477-486.	2.6	63
29	Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation. Developmental Biology, 2010, 341, 236-245.	2.0	59
30	Changes of Matrilin Forms during Endochondral Ossification. Journal of Biological Chemistry, 2000, 275, 32628-32634.	3.4	58
31	HDAC4 Represses Vascular Endothelial Growth Factor Expression in Chondrosarcoma by Modulating RUNX2 Activity. Journal of Biological Chemistry, 2009, 284, 21881-21890.	3.4	57
32	miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Molecular Cancer Research, 2015, 13, 1347-1357.	3.4	57
33	Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine, 2019, 43, 454-459.	6.1	57
34	Clock Gene Bmal1 Modulates Human Cartilage Gene Expression by Crosstalk With Sirt1. Endocrinology, 2016, 157, 3096-3107.	2.8	56
35	The homologous recombination protein RAD51 is a promising therapeutic target for cervical carcinoma. Oncology Reports, 2017, 38, 767-774.	2.6	51
36	In Vivo Identification and Induction of Articular Cartilage Stem Cells by Inhibiting NF-κB Signaling in Osteoarthritis. Stem Cells, 2015, 33, 3125-3137.	3.2	50

#	Article	IF	CITATIONS
37	Inducement of mitogen-activated protein kinases in frozen shoulders. Journal of Orthopaedic Science, 2009, 14, 56-61.	1.1	49
38	CD95-induced osteoarthritic chondrocyte apoptosis and necrosis: dependency on p38 mitogen-activated protein kinase. Arthritis Research and Therapy, 2006, 8, R37.	3.5	48
39	Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins. Osteoarthritis and Cartilage, 2008, 16, 1110-1117.	1.3	47
40	Matrilin-3 Inhibits Chondrocyte Hypertrophy as a Bone Morphogenetic Protein-2 Antagonist. Journal of Biological Chemistry, 2014, 289, 34768-34779.	3.4	46
41	Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Scientific Reports, 2018, 8, 7044.	3.3	46
42	Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomaterialia, 2018, 76, 29-38.	8.3	46
43	Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges. , 2021, 12, 143.		45
44	Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint. International Journal of Molecular Sciences, 2014, 15, 7250-7265.	4.1	42
45	Potential benefits and limitations of utilizing chondroprogenitors in cell-based cartilage therapy. Connective Tissue Research, 2015, 56, 265-271.	2.3	42
46	MicroRNA Regulates Vascular Endothelial Growth Factor Expression in Chondrosarcoma Cells. Clinical Orthopaedics and Related Research, 2015, 473, 907-913.	1.5	42
47	EZH2-mediated repression of GSK-3β and TP53 promotes Wnt/β-catenin signaling-dependent cell expansion in cervical carcinoma. Oncotarget, 2016, 7, 36115-36129.	1.8	42
48	MicroRNAâ€1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. FASEB Journal, 2014, 28, 3930-3941.	0.5	40
49	miR-365 Ameliorates Dexamethasone-Induced Suppression of Osteogenesis in MC3T3-E1 Cells by Targeting HDAC4. International Journal of Molecular Sciences, 2017, 18, 977.	4.1	40
50	Long Noncoding RNA Inc-HC Regulates PPARÎ ³ -Mediated Hepatic Lipid Metabolism through miR-130b-3p. Molecular Therapy - Nucleic Acids, 2019, 18, 954-965.	5.1	40
51	Chicken tibial dyschondroplasia: A limb mutant with two growth plates and possible defects of collagen crosslinking. Developmental Dynamics, 1993, 196, 54-61.	1.8	38
52	The Role of Coiled-coil α-Helices and Disulfide Bonds in the Assembly and Stabilization of Cartilage Matrix Protein Subunits. Journal of Biological Chemistry, 1995, 270, 23150-23154.	3.4	38
53	The effect of rapamycin on bone growth in rabbits. Journal of Orthopaedic Research, 2009, 27, 1157-1161.	2.3	38
54	Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. Journal of Rheumatology, 2006, 33, 1818-26.	2.0	38

#	Article	IF	CITATIONS
55	Matrilin-3 Induction of IL-1 receptor antagonist Is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression. Arthritis Research and Therapy, 2012, 14, R197.	3.5	37
56	The influence of tissue microenvironment on stem cell–based cartilage repair. Annals of the New York Academy of Sciences, 2016, 1383, 21-33.	3.8	37
57	Reduced limb length and worsened osteoarthritis in adult mice after genetic inhibition of p38 MAP kinase activity in cartilage. Arthritis and Rheumatism, 2008, 58, 3520-3529.	6.7	36
58	Long-range movement and fibril association of type X collagen within embryonic cartilage matrix Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8046-8050.	7.1	35
59	Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. FASEB Journal, 2014, 28, 4470-4481.	0.5	35
60	Clinical-radiomics Nomogram for Risk Estimation of Early Hematoma Expansion after Acute Intracerebral Hemorrhage. Academic Radiology, 2021, 28, 307-317.	2.5	35
61	Pericellular Matrilins Regulate Activation of Chondrocytes by Cyclic Load-Induced Matrix Deformation. Journal of Bone and Mineral Research, 2006, 22, 318-328.	2.8	34
62	Epigallocatechin Gallate Protects Mice against Methionine–Choline-Deficient-Diet-Induced Nonalcoholic Steatohepatitis by Improving Gut Microbiota To Attenuate Hepatic Injury and Regulate Metabolism. ACS Omega, 2020, 5, 20800-20809.	3.5	33
63	Domains of type X collagen: alteration of cartilage matrix by fibril association and proteoglycan accumulation Journal of Cell Biology, 1992, 117, 687-694.	5.2	32
64	Inhibition of miRâ€188â€5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 4073-4087.	3.6	32
65	The Noncollagenous Domain 1 of Type X Collagen. Journal of Biological Chemistry, 1999, 274, 22409-22413.	3.4	31
66	Subcellular relocation of histone deacetylase 4 regulates growth plate chondrocyte differentiation through Ca ²⁺ /calmodulin-dependent kinase IV. American Journal of Physiology - Cell Physiology, 2012, 303, C33-C40.	4.6	31
67	Anti-miRNA Oligonucleotide Therapy for Chondrosarcoma. Molecular Cancer Therapeutics, 2019, 18, 2021-2029.	4.1	30
68	Ginsenoside Rb1 and Rb2 upregulate Akt/mTOR signaling–mediated muscular hypertrophy and myoblast differentiation. Journal of Ginseng Research, 2020, 44, 435-441.	5.7	30
69	Identification of clock as a mechanosensitive gene by large-scale DNA microarray analysis: downregulation in osteoarthritic cartilage. Modern Rheumatology, 2006, 16, 131-136.	1.8	28
70	Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1374-E1382.	3.5	28
71	Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes. International Journal of Molecular Sciences, 2016, 17, 188.	4.1	28
72	Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Arthritis Research and Therapy, 2019, 21, 167.	3.5	27

#	Article	IF	CITATIONS
73	Differential Pretensions of a Flexor Tendon Graft for Anterior Cruciate Ligament Reconstruction: A Biomechanical Comparison in a Porcine Knee Model. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2005, 21, 540-546.	2.7	26
74	Live-Cell, Temporal Gene Expression Analysis of Osteogenic Differentiation in Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2013, 19, 40-48.	3.1	26
75	Computational View toward the Inhibition of SARS-CoV-2 Spike Glycoprotein and the 3CL Protease. Computation, 2020, 8, 53.	2.0	26
76	A Biomechanical Comparison of All-Inside Meniscus Repair Techniques. Journal of Surgical Research, 2009, 155, 82-88.	1.6	25
77	Mesenchymal Stem Cell (MSC)â€Đerived Extracellular Vesicles: Potential Therapeutics as MSC Trophic Mediators in Regenerative Medicine. Anatomical Record, 2020, 303, 1735-1742.	1.4	23
78	Matrilin-3 Chondrodysplasia Mutations Cause Attenuated Chondrogenesis, Premature Hypertrophy and Aberrant Response to TGF-β in Chondroprogenitor Cells. International Journal of Molecular Sciences, 2014, 15, 14555-14573.	4.1	22
79	Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-11² and MMP-13. Molecular Medicine Reports, 2016, 14, 1475-1482.	2.4	22
80	Inhibition of MAP kinase in synovium by treatment with tocilizumab in rheumatoid arthritis. Clinical Rheumatology, 2011, 30, 1407-1413.	2.2	21
81	Attenuation of cartilage pathogenesis in post-traumatic osteoarthritis (PTOA) in mice by blocking the stromal derived factor 1 receptor (CXCR4) with the specific inhibitor, AMD3100. Journal of Orthopaedic Research, 2015, 33, 1071-1078.	2.3	21
82	Differential expression of type X collagen in a mechanically active 3-D chondrocyte culture system: a quantitative study. Journal of Orthopaedic Surgery and Research, 2006, 1, 15.	2.3	20
83	Identification of clock as a mechanosensitive gene by large-scale DNA microarray analysis: downregulation in osteoarthritic cartilage. Modern Rheumatology, 2006, 16, 131-136.	1.8	20
84	Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice. PLoS ONE, 2016, 11, e0156676.	2.5	20
85	Live-Cell, Temporal Gene Expression Analysis of Osteogenic Differentiation in Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2014, 20, 899-907.	3.1	19
86	Mitogen-activated protein kinase p38 induces HDAC4 degradation in hypertrophic chondrocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 370-376.	4.1	19
87	Anti-toll-like receptor 2 antibody ameliorates hepatic injury, inflammation, fibrosis and steatosis in obesity-related metabolic disorder rats via regulating MAPK and NF-I®B pathways. International Immunopharmacology, 2020, 82, 106368.	3.8	19
88	Type X collagen: covalent crosslinking to hypertrophic cartilage-collagen fibrils. Bone and Mineral, 1992, 17, 223-227.	1.9	18
89	Type X Collagen and Other Up-Regulated Components of the Avian Hypertrophic Cartilage Program. Progress in Molecular Biology and Translational Science, 1998, 60, 79-109.	1.9	18
90	Cloning, sequencing and expression of a full-length rabbit fast skeletal troponin-C cDNA. FEBS Letters, 1988, 228, 22-26.	2.8	17

#	Article	IF	CITATIONS
91	Matrilin-1 Is an Inhibitor of Neovascularization. Journal of Biological Chemistry, 2014, 289, 14301-14309.	3.4	17
92	Human osteoarthritis cartilageâ€derived stromal cells activate joint degeneration through TGFâ€beta lateral signaling. FASEB Journal, 2020, 34, 16552-16566.	0.5	17
93	Hormonal regulation of IGFBP-2 proteolysis is attenuated with progression to androgen insensitivity in the LNCaP progression model. Journal of Cellular Physiology, 2007, 213, 261-268.	4.1	16
94	Cartilage Ablation of Sirt1 Causes Inhibition of Growth Plate Chondrogenesis by Hyperactivation of mTORC1 Signaling. Endocrinology, 2019, 160, 3001-3017.	2.8	16
95	Type II collagen during cartilage and corneal development: Immunohistochemical analysis with an anti-telopeptide antibody. Developmental Dynamics, 1993, 196, 47-53.	1.8	15
96	1H magnetic resonance spectroscopy of nanomelic chicken cartilage: effect of aggrecan depletion on cartilage T2. Osteoarthritis and Cartilage, 2003, 11, 709-715.	1.3	15
97	Ptpn11 Deletion in CD4+ Cells Does Not Affect T Cell Development and Functions but Causes Cartilage Tumors in a T Cell-Independent Manner. Frontiers in Immunology, 2017, 8, 1326.	4.8	15
98	Synovial inflammation plays a greater role in post-traumatic osteoarthritis compared to idiopathic osteoarthritis in the Hartley guinea pig knee. BMC Musculoskeletal Disorders, 2017, 18, 556.	1.9	15
99	Aggrecan is required for chondrocyte differentiation in ATDC5 chondroprogenitor cells. PLoS ONE, 2019, 14, e0218399.	2.5	14
100	Predicting intraventricular hemorrhage growth with a machine learning-based, radiomics-clinical model. Aging, 2021, 13, 12833-12848.	3.1	13
101	Multiple functions of the von Willebrand Factor A domain in matrilins: secretion, assembly, and proteolysis. Journal of Orthopaedic Surgery and Research, 2008, 3, 21.	2.3	12
102	Epiphysiodesis with Infusion of Stromal Cell-Derived Factor-1 in Rabbit Growth Plates. Journal of Bone and Joint Surgery - Series A, 2007, 89, 102-113.	3.0	11
103	Strain distribution of repaired articular cartilage defects by tissue engineering under compression loading. Journal of Orthopaedic Surgery and Research, 2018, 13, 19.	2.3	11
104	Association Between Eosinophilic Leukocyte Count and Hematoma Expansion in Acute Spontaneous Intracerebral Hemorrhage. Frontiers in Neurology, 2019, 10, 1164.	2.4	11
105	Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. Current Molecular Biology Reports, 2020, 6, 173-182.	1.6	11
106	Senescent Tissue-Resident Mesenchymal Stromal Cells Are an Internal Source of Inflammation in Human Osteoarthritic Cartilage. Frontiers in Cell and Developmental Biology, 2021, 9, 725071.	3.7	11
107	5,7,3′,4′-Tetramethoxyflavone protects chondrocytes from ER stress-induced apoptosis through regulation of the IRE1α pathway. Connective Tissue Research, 2018, 59, 157-166.	2.3	10
108	20(S)-Rg3 upregulates FDFT1 via reducing miR-4425 to inhibit ovarian cancer progression. Archives of Biochemistry and Biophysics, 2020, 693, 108569.	3.0	10

#	Article	IF	CITATIONS
109	Radiomics for intracerebral hemorrhage: are all small hematomas benign?. British Journal of Radiology, 2021, 94, 20201047.	2.2	10
110	Assembly of Type X Collagen by Hypertrophic Chondrocytes. , 1994, , 171-206.		9
111	A haplotype of MATN3 is associated with vertebral fracture in Chinese postmenopausal women: Peking Vertebral Fracture (PK-VF) study. Bone, 2012, 50, 917-924.	2.9	8
112	Blend Sign Is a Strong Predictor of the Extent of Early Hematoma Expansion in Spontaneous Intracerebral Hemorrhage. Frontiers in Neurology, 2020, 11, 334.	2.4	8
113	IFN-γ contributes to the hepatic inflammation in HFD-induced nonalcoholic steatohepatitis by STAT1β/TLR2 signaling pathway. Molecular Immunology, 2021, 134, 118-128.	2.2	8
114	Cholesterol-induced leucine aminopeptidase 3 (LAP3) upregulation inhibits cell autophagy in pathogenesis of NAFLD. Aging, 2022, 14, 3259-3275.	3.1	8
115	Cartilage Matrix Protein: Expression Patterns in Chicken, Mouse, and Humana. Annals of the New York Academy of Sciences, 1996, 785, 238-240.	3.8	7
116	Matrilin-2 Is Proteolytically Cleaved by ADAMTS-4 and ADAMTS-5. Molecules, 2014, 19, 8472-8487.	3.8	7
117	Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 4823.	4.1	7
118	Senescence-Associated Cell Transition and Interaction (SACTAI): A Proposed Mechanism for Tissue Aging, Repair, and Degeneration. Cells, 2022, 11, 1089.	4.1	7
119	Sonic Hedgehog Induces Mesenchymal Stromal Cell Senescence-Associated Secretory Phenotype and Chondrocyte Apoptosis in Human Osteoarthritic Cartilage. Frontiers in Cell and Developmental Biology, 2021, 9, 716610.	3.7	6
120	A novel dual-frequency loading system for studying mechanobiology of load-bearing tissue. Materials Science and Engineering C, 2016, 69, 262-267.	7.3	5
121	The developmental expression profile of PAX2 in the murine prostate. Prostate, 2010, 70, 654-665.	2.3	4
122	Inhibitor of apoptosis protein‑like protein‑2: A novel growth accelerator for breast cancer cells. Oncology Reports, 2018, 40, 2047-2055.	2.6	4
123	Pdcd4 promotes lipid deposition by attenuating PPARα-mediated fatty acid oxidation in hepatocytes. Molecular and Cellular Endocrinology, 2022, 545, 111562.	3.2	4
124	Comparison of Ultra-Early Hematoma Growth and Common Noncontrast Computed Tomography Features in Predicting Hematoma Enlargement in Patients with Spontaneous Intracerebral Hemorrhage. World Neurosurgery, 2020, 134, e75-e81.	1.3	3
125	Long non-coding RNA RP11-284F21.9 functions as a ceRNA regulating PPWD1 by competitively binding to miR-769-3p in cervical carcinoma. Bioscience Reports, 2020, 40, .	2.4	3
126	Mechanisms underlying mechanical regulation of cartilage growth. Current Opinion in Orthopaedics, 2003, 14, 307-310.	0.3	2

#	Article	IF	CITATIONS
127	Creating conditional dual fluorescence labeled transgenic animals for studying function of small noncoding RNAs. Connective Tissue Research, 2017, 58, 103-115.	2.3	2
128	Design and Synthesis of Novel Nordihydroguaiaretic Acid (NDGA) Analogues as Potential FGFR1 Kinase Inhibitors With Anti-Gastric Activity and Chemosensitizing Effect. Frontiers in Pharmacology, 2020, 11, 518068.	3.5	2
129	Dilated Optic Nerve Sheath Diameter Predicts Poor Outcome in Acute Spontaneous Intracerebral Hemorrhage. Cerebrovascular Diseases, 2022, 51, 199-206.	1.7	2
130	Androgen mediated translational and postranslational regulation of IGFBP-2 in androgen-sensitive LNCaP human prostate cancer cells. American Journal of Translational Research (discontinued), 2010, 2, 200-8.	0.0	2
131	Correction: Attenuation of osteoarthritis via blockade of the SDF-1/CXCR4 signaling pathway. Arthritis Research and Therapy, 2013, 15, 410.	3.5	1
132	Epiphysiodesis with Infusion of Stromal Cell- Derived Factor-1 in Rabbit Growth Plates. Journal of Bone and Joint Surgery - Series A, 2007, 89, 102-113.	3.0	1
133	Regulation of cartilage maturation: intracellular pathways and extracellular modulators. Current Opinion in Orthopaedics, 2002, 13, 329-332.	0.3	Ο
134	Skeletal mechanobiology: where does it go in the ???post-dinosaur??? age?. Current Opinion in Orthopaedics, 2005, 16, 309-310.	0.3	0
135	Chondrocyte Mechanotransduction in Three-Dimensional Cell Culture. , 2008, , 153-163.		0
136	Rheumatoid and osteoarthritis in cartilage and bone health. Bone, 2010, 47, S354.	2.9	0
137	Pre-clinical animal models of osteoarthritis. Bone, 2010, 47, S350-S351.	2.9	0
138	Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Bone, 2010, 47, S361-S362.	2.9	0
139	Mechanotransduction Pathways in Cartilage. , 2004, , 89-98.		0
140	ENDOCHONDRAL BONE FORMATION AND EXTRACELLULAR MATRIX. , 2005, , 145-162.		0
141	The MAP Kinase Signaling Pathways Regulating Bone Formation. FASEB Journal, 2006, 20, A868.	0.5	0
142	Abstract SY15-01: Cellular context-specific tumor suppression byPTPN11. , 2012, , .		0
143	MON-262 Aggrecan Is Required for Chondrocyte Differentiation in ATDC5 Chondroprogenitor Cells. Journal of the Endocrine Society, 2019, 3, .	0.2	0
144	Janus Base Derived Nanopieces for Delivery of Anti-miRNA Oligonucleotides in Chondrosarcoma. Transactions of the Annual Meeting of the Orthopaedic Research Society, 2019, 44, .	0.0	0

#	Article	IF	CITATIONS
145	COBRE for Skeletal Health and Repair: The Impact of Aging on the Capacity for Peripheral Nerve Regeneration. Rhode Island Medical Journal (2013), 2021, 104, 39-45.	0.2	0