Endre Kiss-Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9291237/publications.pdf

Version: 2024-02-01

99 papers

3,970 citations

28 h-index 62 g-index

109 all docs

109 docs citations

109 times ranked 7153 citing authors

#	Article	IF	CITATIONS
1	Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. International Journal of Molecular Sciences, 2022, 23, 6983.	4.1	9
2	Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers, 2021, 13, 6318.	3.7	7
3	Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Frontiers in Immunology, 2020, 11, 574046.	4.8	18
4	Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers, 2020, 12, 2593.	3.7	26
5	A Regenerative Approach to Canine Osteoarthritis Using Allogeneic, Adipose-Derived Mesenchymal Stem Cells. Safety Results of a Long-Term Follow-Up. Frontiers in Veterinary Science, 2020, 7, 510.	2.2	9
6	Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids. Atherosclerosis, 2020, 305, 10-18.	0.8	19
7	Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nature Communications, 2020, 11, 214.	12.8	103
8	TMEM203 is a binding partner and regulator of STING-mediated inflammatory signaling in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16479-16488.	7.1	43
9	Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Science Advances, 2019, 5, eaax9183.	10.3	50
10	BS22â€Double positive (CD86+ MRC1+) inflammatory macrophages in the pathogenesis of carotid atherosclerosis. , 2019, , .		0
11	BS25â€Investigating the MIR-101-3P/TRIB1 axis in macrophage immunometabolism. , 2019, , .		1
12	P26â€∫MIR-101-3P CONTROLS TRIB1 EXPRESSION IN HUMAN MACROPHAGES: A POTENTIAL TARGET IN ATHEROSCLEROTIC PLAQUES. Cardiovascular Research, 2018, 114, S8-S8.	3.8	0
13	P14â€∱MYELOID TRIB1 PROMOTES EXPERIMENTAL ATHEROSCLEROSIS. Cardiovascular Research, 2018, 114, S4-S4.	3.8	1
14	P16 HUMAN MACROPHAGE SUBSETS IN THE PATHOGENESIS OF CAROTID ATHEROSCLEROSIS. Cardiovascular Research, 2018, 114, S5-S6.	3.8	3
15	110â€Post-transcriptional regulation of trib1 by mirnas in primary macrophages. , 2018, , .		1
16	KIF26B is necessary for osteogenic transdifferentiation and mineralisation in an in vitro model of heterotopic ossification. Osteoarthritis and Cartilage, 2018, 26, S33.	1.3	1
17	Experimental models of murine atherosclerosis: does perception match reality?. Cardiovascular Research, 2018, 114, 1845-1847.	3.8	7
18	114â€TRIB3-mediated regulation of macrophage phenotype. , 2018, , .		0

#	Article	IF	CITATIONS
19	Tribbles. , 2018, , 5690-5697.		O
20	123â€Myeloid TRIB1 controls experimental atherosclerosis. , 2018, , .		0
21	116â€Semi-quantitative imaging of macrophages in human carotid atherosclerotic plaques. , 2018, , .		0
22	Regulating STING in health and disease. Journal of Inflammation, 2017, 14, 11.	3.4	72
23	The IL-1RI Co-Receptor TILRR (FREM1Âlsoform 2) Controls Aberrant Inflammatory Responses and Development of Vascular Disease. JACC Basic To Translational Science, 2017, 2, 398-414.	4.1	17
24	Tribbles-3, a regulator of metabolic syndromes and type 2 diabetes. Atherosclerosis, 2017, 263, e50.	0.8	0
25	Evidence for a role of TRIB3 in the regulation of megakaryocytopoiesis. Scientific Reports, 2017, 7, 6684.	3.3	6
26	157â€Myeloid expression of trib1 regulates the polarisation state of tissue resident macrophages that has consequences on plasma lipid and metabolic homeostasis. Heart, 2017, 103, A113.2-A113.	2.9	0
27	201â€Human oxidised phospholipid macrophages have high lipoprotein handling capabilities without readily forming unwanted foam cells. Heart, 2017, 103, A136.1-A136.	2.9	0
28	Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Canadian Journal of Veterinary Research, 2017, 81, 73-78.	0.2	24
29	Differential IL- $1\hat{1}^2$ secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Scientific Reports, 2016, 6, 39035.	3.3	48
30	Does myeloid expression of TRIB1 regulate plasma lipid levels. Atherosclerosis, 2016, 244, e6-e7.	0.8	0
31	Competition between members of the tribbles pseudokinase protein family shapes their interactions with mitogen activated protein kinase pathways. Scientific Reports, 2016, 6, 32667.	3.3	40
32	165â€In situExamination of Plaque Macrophage Populations Using Multicolour Florescence Microscopy Reveals Critical Differences between Murine Models of Experimental Atherosclerosis. Heart, 2016, 102, A116.2-A117.	2.9	0
33	Particle-Induced Osteolysis Is Mediated by TIRAP/Mal in Vitro and in Vivo. Journal of Bone and Joint Surgery - Series A, 2016, 98, 285-294.	3.0	21
34	Multi-Compartmentalisation in the MAPK Signalling Pathway Contributes to the Emergence of Oscillatory Behaviour and to Ultrasensitivity. PLoS ONE, 2016, 11, e0156139.	2.5	15
35	Tribbles in inflammation. Biochemical Society Transactions, 2015, 43, 1069-1074.	3.4	21
36	Oncosuppressive functions of tribbles pseudokinase 3. Biochemical Society Transactions, 2015, 43, 1122-1126.	3.4	20

#	Article	IF	CITATIONS
37	Tribbles role in reproduction. Biochemical Society Transactions, 2015, 43, 1116-1121.	3.4	6
38	Tribbles at the cross-roads…. Biochemical Society Transactions, 2015, 43, 1049-1050.	3.4	7
39	186 Assessment of Plaque Macrophage Phenotype <i>in situ</i> by Multicolour Fluorescence Microscopy. Heart, 2015, 101, A104.2-A105.	2.9	0
40	223â€MIRNA202 is a Novel Regulator of Tribbles-1 Expression. Heart, 2015, 101, A121.2-A121.	2.9	1
41	179 Investigation of human monocyte derived macrophage phenotypes for their functional role in atherosclerosis:. Heart, 2015, 101, A101.2-A102.	2.9	0
42	Genetic variation in inflammatory and bone turnover pathways and risk of osteolytic responses to prosthetic materials. Journal of Orthopaedic Research, 2015, 33, 193-198.	2.3	22
43	Loss of Tribbles pseudokinase-3 promotes Akt-driven tumorigenesis via FOXO inactivation. Cell Death and Differentiation, 2015, 22, 131-144.	11.2	70
44	TRIB3 suppresses tumorigenesis by controlling mTORC2/AKT/FOXO signaling. Molecular and Cellular Oncology, 2015, 2, e980134.	0.7	16
45	213â€Functional Characterisation of Monocyte Derived Macrophage Phenotypes for their Role in Atherosclerosis. Heart, 2014, 100, A117.1-A117.	2.9	0
46	The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1573-1578.	2.4	46
47	Generation of a novel mouse model for the inducible depletion of macrophages in vivo. Genesis, 2013, 51, 41-49.	1.6	6
48	Identification of Tribbles-1 as a Novel Binding Partner of Foxp3 in Regulatory T Cells. Journal of Biological Chemistry, 2013, 288, 10051-10060.	3.4	25
49	235 TRIBBLES-1 CONTRIBUTES TO MONOCYTE MIGRATION IN EXPERIMENTAL PERITONITIS. Heart, 2013, 99, A126.1-A126.	2.9	0
50	The Tribbles-1 Protein in Humans: Roles and Functions in Health and Disease. Current Molecular Medicine, 2013, 13, 80-85.	1.3	11
51	A TNF Variant that Associates with Susceptibility to Musculoskeletal Disease Modulates Thyroid Hormone Receptor Binding to Control Promoter Activation. PLoS ONE, 2013, 8, e76034.	2.5	14
52	The tribbles gene family and lipoprotein metabolism. Current Opinion in Lipidology, 2012, 23, 122-126.	2.7	21
53	Distinct Control of MyD88 Adapter-dependent and Akt Kinase-regulated Responses by the Interleukin (IL)-1RI Co-receptor, TILRR. Journal of Biological Chemistry, 2012, 287, 12348-12352.	3.4	23
54	Identification of 34 Novel Proinflammatory Proteins in a Genome-Wide Macrophage Functional Screen. PLoS ONE, 2012, 7, e42388.	2.5	9

#	Article	IF	CITATIONS
55	Enhanced Macrophage Tribbles-1 Expression in Murine Experimental Atherosclerosis. Biology, 2012, 1, 43-57.	2.8	6
56	Bioinformatics Analysis of the FREM1 Geneâ€"Evolutionary Development of the IL-1R1 Co-Receptor, TILRR. Biology, 2012, 1, 484-494.	2.8	8
57	Identification of 34 Novel Proinflammatory Proteins in a Genome-Wide Macrophage Functional Screen. , 2012, 7, e42388.		0
58	Identification of 34 Novel Proinflammatory Proteins in a Genome-Wide Macrophage Functional Screen. , 2012, 7, e42388.		0
59	Age-related loss of CpG methylation in the tumour necrosis factor promoter. Cytokine, 2011, 56, 792-797.	3.2	73
60	Tribbles: â€~puzzling' regulators of cell signalling. Biochemical Society Transactions, 2011, 39, 684-687.	3.4	38
61	TRIBBLES-1 IS EXPRESSED BY REGULATORY T CELLS AND INTERACTS WITH FOXP3. Transplantation, 2010, 90, 52.	1.0	0
62	Individual susceptibility to periprosthetic osteolysis is associated with altered patterns of innate immune gene expression in response to proâ€inflammatory stimuli. Journal of Orthopaedic Research, 2010, 28, 1127-1135.	2.3	37
63	Tribbles-1 and -2 are tumour suppressors, down-regulated in human acute myeloid leukaemia. Immunology Letters, 2010, 130, 115-124.	2.5	41
64	TILRR, a novel IL-1RI co-receptor, potentiates MyD88 recruitment to control Ras-dependent amplification of NF-κB Journal of Biological Chemistry, 2010, 285, 18122.	3.4	1
65	TILRR, a Novel IL-1RI Co-receptor, Potentiates MyD88 Recruitment to Control Ras-dependent Amplification of NF-κB. Journal of Biological Chemistry, 2010, 285, 7222-7232.	3.4	41
66	Reply to letter by Gallo and Petrek commenting on interleukinâ€1 receptor antagonist and interleukinâ€6 polymorphisms and post–total hip arthroplasty osteolysis. Arthritis and Rheumatism, 2009, 60, 3856-3857.	6.7	3
67	Expression of tak1 and tram induces synergistic pro-inflammatory signalling and adjuvants DNA vaccines. Vaccine, 2009, 27, 5589-5598.	3.8	19
68	Immunomics: At the Forefront of Innate Immunity Research. , 2009, , 15-38.		0
69	Polymorphisms in the interleukinâ€1 receptor antagonist and interleukinâ€6 genes affect risk of osteolysis in patients with total hip arthroplasty. Arthritis and Rheumatism, 2008, 58, 3157-3165.	6.7	66
70	LDL uptake by monocytes in response to inflammation is MAPK dependent but independent of tribbles protein expression. Immunology Letters, 2008, 116, 178-183.	2.5	14
71	Advanced Technologies for Studies on Protein Interactomes. Advances in Biochemical Engineering/Biotechnology, 2008, 110, 1-24.	1.1	19
72	Analysis of innate immune signal transduction with autocatalytic expression vectors. Journal of Immunological Methods, 2008, 330, 96-108.	1.4	3

#	Article	IF	CITATIONS
73	Tribbles-2 is a novel regulator of inflammatory activation of monocytes. International Immunology, 2008, 20, 1543-1550.	4.0	53
74	Human Tribbles-1 Controls Proliferation and Chemotaxis of Smooth Muscle Cells via MAPK Signaling Pathways. Journal of Biological Chemistry, 2007, 282, 18379-18387.	3.4	121
75	Tribbles: A family of kinase-like proteins with potent signalling regulatory function. Cellular Signalling, 2007, 19, 238-250.	3.6	151
76	Tribbles: novel regulators of cell function; evolutionary aspects. Cellular and Molecular Life Sciences, 2006, 63, 1632-1641.	5.4	105
77	Regulation of expression and signalling modulator function of mammalian tribbles is cell-type specific. Immunology Letters, 2006, 104, 171-177.	2.5	88
78	Feedback loops in intracellular signal processing and their potential for identifying novel signalling proteins. Cellular Immunology, 2006, 244, 158-161.	3.0	7
79	Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning. Cellular Signalling, 2006, 18, 202-214.	3 . 6	65
80	Functional mapping of Toll/interleukin-1 signalling networks by expression cloning. Biochemical Society Transactions, 2005, 33, 1405.	3.4	11
81	Synergistic Effect of Avemar on Proinflammatory Cytokine Production and Ras-Mediated Cell Activation. Annals of the New York Academy of Sciences, 2005, 1051, 515-528.	3.8	12
82	Human Tribbles, a Protein Family Controlling Mitogen-activated Protein Kinase Cascades. Journal of Biological Chemistry, 2004, 279, 42703-42708.	3.4	292
83	Hunting for genes by functional screens. Cytokine and Growth Factor Reviews, 2004, 15, 97-102.	7.2	13
84	Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound in Medicine and Biology, 2003, 29, 1453-1461.	1.5	57
85	A Dilemma of Functional Genomics: Count the Chickens or Study their Eggs ?. Current Genomics, 2002, 3, 139-148.	1.6	3
86	Rapid Secretion of Interleukin- $\hat{l^2}$ by Microvesicle Shedding. Immunity, 2001, 15, 825-835.	14.3	767
87	A Method for Enhancing the Transfection Efficiency of Minipreps Obtained from Plasmid cDNA Libraries. Analytical Biochemistry, 2001, 288, 230-232.	2.4	8
88	Ras Controls Tumor Necrosis Factor Receptor-associated Factor (TRAF)6-dependent Induction of Nuclear Factor-ÎB. Journal of Biological Chemistry, 2001, 276, 6280-6288.	3.4	27
89	A novel mammalian expression screen exploiting green fluorescent protein-based transcription detection in single cells. Journal of Immunological Methods, 2000, 239, 125-135.	1.4	29
90	Evidence for an Accessory Protein Function for Toll-Like Receptor 1 in Anti-Bacterial Responses. Journal of Immunology, 2000, 165, 7125-7132.	0.8	257

#	Article	IF	CITATION
91	A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10162-10167.	7.1	422
92	Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. European Journal of Immunology, 1998, 28, 1701-1707.	2.9	111
93	Transcription factor AP-4 participates in activation of bovine leukemia virus long terminal repeat by p34 Tax. Nucleic Acids Research, 1994, 22, 4872-4875.	14.5	29
94	A Downstream Regulatory Element Activates the Bovine Leukemia Virus Promoter. Biochemical and Biophysical Research Communications, 1994, 202, 1553-1561.	2.1	17
95	Member of the CREB/ATF protein family, but not CREBα plays an active role in BLVtax transactivationin vivo. Nucleic Acids Research, 1993, 21, 3677-3682.	14.5	14
96	Trb1. The AFCS-nature Molecule Pages, 0, , .	0.2	13
97	Trb3. The AFCS-nature Molecule Pages, 0, , .	0.2	2
98	Trb2. The AFCS-nature Molecule Pages, 0, , .	0.2	2
99	Fluorescent Protein Reporter Systems for Single-Cell Measurements. , 0, , 111-120.		O