Shun-Guang Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9290313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predator Scent-Induced Sensitization of Hypertension and Anxiety-like Behaviors. Cellular and Molecular Neurobiology, 2022, 42, 1141-1152.	3.3	8
2	Loss of the Protective Effect of Estrogen Contributes to Maternal Gestational Hypertensionâ€Induced Hypertensive Response Sensitization Elicited by Postweaning Highâ€Fat Diet in Female Offspring. Journal of the American Heart Association, 2022, 11, e023685.	3.7	3
3	Transforming Growth Factor-α Acts in Hypothalamic Paraventricular Nucleus to Upregulate ERK1/2 Signaling and Expression of Sympathoexcitatory Mediators in Heart Failure Rats. Neuroscience, 2022, 483, 13-23.	2.3	2
4	An injectable microparticle formulation for the sustained release of the specific MEK inhibitor PD98059: in vitro evaluation and pharmacokinetics. Drug Delivery and Translational Research, 2021, 11, 182-191.	5.8	9
5	TNF-α-induced sympathetic excitation requires EGFR and ERK1/2 signaling in cardiovascular regulatory regions of the forebrain. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H772-H786.	3.2	11
6	Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience, 2021, 463, 227-237.	2.3	4
7	Maternal Angiotensin II–Induced Hypertension Sensitizes Postweaning Highâ€Fat Diet–Elicited Hypertensive Response Through Increased Brain Reactivity in Rat Offspring. Journal of the American Heart Association, 2021, 10, e022170.	3.7	6
8	IL (Interleukin)-17A Acts in the Brain to Drive Neuroinflammation, Sympathetic Activation, and Hypertension. Hypertension, 2021, 78, 1450-1462.	2.7	14
9	An Injectable Microparticle Formulation Provides Long-Term Inhibition of Hypothalamic ERK1/2 Activity and Sympathetic Excitation in Rats with Heart Failure. Molecular Pharmaceutics, 2020, 17, 3643-3648.	4.6	4
10	Transforming Growth Factorâ€Î± Acts via Epidermal Growth Factor Receptor to Increase p44/42 Mitogenâ€Activated Protein Kinase Signaling and Expression of Excitatory Mediators in the Hypothalamic Paraventricular Nucleus in Rats. FASEB Journal, 2020, 34, 1-1.	0.5	1
11	Brain TACE (Tumor Necrosis Factor-α–Converting Enzyme) Contributes to Sympathetic Excitation in Heart Failure Rats. Hypertension, 2019, 74, 63-72.	2.7	25
12	Stress-Induced Sensitization of Angiotensin II Hypertension Is Reversed by Blockade of Angiotensin-Converting Enzyme or Tumor Necrosis Factor-α. American Journal of Hypertension, 2019, 32, 909-917.	2.0	20
13	Sex differences in the central and peripheral manifestations of ischemia-induced heart failure in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H70-H79.	3.2	15
14	Role of TACE in LPSâ€induced Production of Soluble Tumor Necrosis Factorâ€i± in Astrocytes. FASEB Journal, 2019, 33, lb640.	0.5	0
15	Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Neuroscience, 2018, 381, 46-58.	2.3	39
16	Blood-borne interleukin-1β acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R447-R458.	1.8	26
17	TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H744-H756.	3.2	33
18	ERK1/2 MAPK signaling in hypothalamic paraventricular nucleus contributes to sympathetic excitation in rats with heart failure after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H732-H739.	3.2	41

SHUN-GUANG WEI

#	Article	IF	CITATIONS
19	Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H871-H880.	3.2	41
20	Inhibition of Brain Mitogen-Activated Protein Kinase Signaling Reduces Central Endoplasmic Reticulum Stress and Inflammation and Sympathetic Nerve Activity in Heart Failure Rats. Hypertension, 2016, 67, 229-236.	2.7	29
21	Activation of Central PPAR-γ Attenuates Angiotensin Il–Induced Hypertension. Hypertension, 2015, 66, 403-411.	2.7	38
22	Proinflammatory Cytokines Upregulate Sympathoexcitatory Mechanisms in the Subfornical Organ of the Rat. Hypertension, 2015, 65, 1126-1133.	2.7	86
23	Central SDF-1/CXCL12 expression and its cardiovascular and sympathetic effects: the role of angiotensin II, TNF-α, and MAP kinase signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1643-H1654.	3.2	23
24	Early Interference With p44/42 Mitogen-Activated Protein Kinase Signaling in Hypothalamic Paraventricular Nucleus Attenuates Angiotensin II–Induced Hypertension. Hypertension, 2013, 61, 842-849.	2.7	31
25	Functional Regulation of ClC-3 in the Migration of Vascular Smooth Muscle Cells. Hypertension, 2013, 61, 174-179.	2.7	25
26	Subfornical Organ Mediates Sympathetic and Hemodynamic Responses to Blood-Borne Proinflammatory Cytokines. Hypertension, 2013, 62, 118-125.	2.7	78
27	Brain Endoplasmic Reticulum (ER) Stress Mediates Lipopolysaccharideâ€Induced Central Inflammation and Sympathetic and Cardiovascular Excitation. FASEB Journal, 2013, 27, 697.7.	0.5	Ο
28	Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H742-H751.	3.2	25
29	Peroxisome Proliferator-Activated Receptor-Î ³ Regulates Inflammation and Renin-Angiotensin System Activity in the Hypothalamic Paraventricular Nucleus and Ameliorates Peripheral Manifestations of Heart Failure. Hypertension, 2012, 59, 477-484.	2.7	39
30	Central Actions of the Chemokine Stromal Cell-Derived Factor 1 Contribute to Neurohumoral Excitation in Heart Failure Rats. Hypertension, 2012, 59, 991-998.	2.7	34
31	Abstract 415: Brain Epidermal Growth Factor Receptor and c-Src Tyrosine Kinase Contribute to Sympathetic Excitation Induced by Systemically Administered Aldosterone in Rats. Hypertension, 2012, 60, .	2.7	1
32	Early Interference with p44/42 Mitogenâ€Activated Protein Kinase (MAPK) Signaling in Hypothalamic Paraventricular Nucleus (PVN) Attenuates Angiotensin Ilâ€Induced Hypertension in Rats. FASEB Journal, 2012, 26, Ib694.	0.5	0
33	EP ₃ receptors mediate PGE ₂ -induced hypothalamic paraventricular nucleus excitation and sympathetic activation. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1559-H1569.	3.2	37
34	Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD(P)H oxidase-dependent mitogen-activated protein kinase signaling. Journal of Hypertension, 2010, 28, 806-816.	0.5	51
35	Brain Perivascular Macrophages and the Sympathetic Response to Inflammation in Rats After Myocardial Infarction. Hypertension, 2010, 55, 652-659.	2.7	102
36	Brain p44/42 mitogenâ€activated protein kinase contributes to the sympathetic response to bloodâ€borne TNFâ€Î± in rats. FASEB Journal, 2010, 24, 1050.4.	0.5	1

SHUN-GUANG WEI

#	Article	IF	CITATIONS
37	Silencing of brain p44/42 mitogenâ€activated protein kinase ameliorates aldosteroneâ€induced sympathetic excitation in rats. FASEB Journal, 2010, 24, 1050.3.	0.5	0
38	Angiotensin II upregulates hypothalamic AT ₁ receptor expression in rats via the mitogen-activated protein kinase pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1425-H1433.	3.2	92
39	Autonomic cardiovascular modulation. IEEE Engineering in Medicine and Biology Magazine, 2009, 28, 79-85.	0.8	18
40	Pharmacological Treatment for Heart Failure: A View From the Brain. Clinical Pharmacology and Therapeutics, 2009, 86, 216-220.	4.7	41
41	Symbolic analysis detects alterations of cardiac autonomic modulation in congestive heart failure rats. Autonomic Neuroscience: Basic and Clinical, 2009, 150, 21-26.	2.8	39
42	Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. Journal of Hypertension, 2009, 27, 543-550.	0.5	18
43	Angiotensin Il–Triggered p44/42 Mitogen-Activated Protein Kinase Mediates Sympathetic Excitation in Heart Failure Rats. Hypertension, 2008, 52, 342-350.	2.7	57
44	Aldosterone acts centrally to increase brain renin-angiotensin system activity and oxidative stress in normal rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1067-H1074.	3.2	108
45	Mitogen-Activated Protein Kinases Mediate Upregulation of Hypothalamic Angiotensin II Type 1 Receptors in Heart Failure Rats. Hypertension, 2008, 52, 679-686.	2.7	52
46	Does Aldosterone Upregulate the Brain Renin-Angiotensin System in Rats With Heart Failure?. Hypertension, 2008, 51, 727-733.	2.7	102
47	Central Gene Transfer of Interleukin-10 Reduces Hypothalamic Inflammation and Evidence of Heart Failure in Rats After Myocardial Infarction. Circulation Research, 2007, 101, 304-312.	4.5	60
48	Increased Cyclooxygenase-2 Expression in Hypothalamic Paraventricular Nucleus in Rats With Heart Failure. Hypertension, 2007, 49, 511-518.	2.7	33
49	Central mineralocorticoid receptor antagonism improves autonomic neural control in heart failure rats. FASEB Journal, 2007, 21, A1267.	0.5	0
50	Circulating Angiotensin II Upregulates Brain Angiotensin Type 1 Receptors in Normal and Heart Failure Rats. FASEB Journal, 2007, 21, A1266.	0.5	2
51	Interleukinâ€10 Suppresses Sympathoâ€Excitatory Responses to Central LPS in Rats. FASEB Journal, 2007, 21, A884.	0.5	0
52	11β-Hydroxysteroid Dehydrogenase Type 2 Activity in Hypothalamic Paraventricular Nucleus Modulates Sympathetic Excitation. Hypertension, 2006, 48, 127-133.	2.7	69
53	Assessment of blood pressure variability by means of spectral and symbolic analysis in normal and congestive heart failure rats. FASEB Journal, 2006, 20, A1204.	0.5	0
54	Brain angiotensin-converting enzyme activity and autonomic regulation in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2138-H2146.	3.2	67

SHUN-GUANG WEI

#	Article	IF	CITATIONS
55	Heart failure and the brain: new perspectives. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R259-R276.	1.8	110
56	Cardiovascular and renal sympathetic activation by blood-borne TNF-α in rat: the role of central prostaglandins. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R916-R927.	1.8	133
57	Forebrain renin-angiotensin system has a tonic excitatory influence on renal sympathetic nerve activity. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H890-H895.	3.2	34
58	Forebrain-mediated adaptations to myocardial infarction in the rat. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1898-H1906.	3.2	23
59	Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2241-H2251.	3.2	131
60	Neurohumoral Regulation in Ischemiaâ€Induced Heart Failure. Annals of the New York Academy of Sciences, 2001, 940, 444-453.	3.8	30