Ming-Hai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9289412/publications.pdf

Version: 2024-02-01

62 papers	2,265 citations	27 h-index	214800 47 g-index
65	65	65	1838
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Pharmaceutical strategies in the emerging era of antibody-based biotherapeutics for the treatment of cancers overexpressing MET receptor tyrosine kinase. Drug Discovery Today, 2021, 26, 106-121.	6.4	7
2	Oncogenic mechanism-based pharmaceutical validation of therapeutics targeting MET receptor tyrosine kinase. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592110069.	3.2	7
3	Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discovery Today, 2021, 26, 1857-1874.	6.4	25
4	Antibody-Drug Conjugate PCMC1D3-Duocarmycin SA as a Novel Therapeutic Entity for Targeted Treatment of Cancers Aberrantly Expressing MET Receptor Tyrosine Kinase. Current Cancer Drug Targets, 2021, 21, .	1.6	0
5	MET and RON receptor tyrosine kinases in colorectal adenocarcinoma: molecular features as drug targets and antibody-drug conjugates for therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 198.	8.6	10
6	Progress and challenge in development of biotherapeutics targeting MET receptor for treatment of advanced cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188425.	7.4	11
7	Targeting RON receptor tyrosine kinase for treatment of advanced solid cancers: antibody–drug conjugates as lead drug candidates for clinical trials. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592092006.	3.2	3
8	Antibody–drug conjugates targeting RON receptor tyrosine kinase as a novel strategy for treatment of triple-negative breast cancer. Drug Discovery Today, 2020, 25, 1160-1173.	6.4	7
9	RON receptor tyrosine kinase in pancreatic ductal adenocarcinoma: Pathogenic mechanism in malignancy and pharmaceutical target for therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188360.	7.4	6
10	RON and MET Co-overexpression Are Significant Pathological Characteristics of Poor Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Triple-Negative Breast Cancer. Cancer Research and Treatment, 2020, 52, 973-986.	3.0	15
11	Pathological significance of abnormal recepteur d'origine nantais and programmed death ligand 1 expression in colorectal cancer. World Journal of Gastrointestinal Oncology, 2020, 12, 1216-1236.	2.0	1
12	Therapeutic efficacy of a novel humanized antibody-drug conjugate recognizing plexin-semaphorin-integrin domain in the RON receptor for targeted cancer therapy., 2019, 7, 250.		16
13	Therapeutic efficacy, pharmacokinetic profiles, and toxicological activities of humanized antibody-drug conjugate Zt/g4-MMAE targeting RON receptor tyrosine kinase for cancer therapy. , 2019, 7, 75.		20
14	Aberrant RON and MET Co-overexpression as Novel Prognostic Biomarkers of Shortened Patient Survival and Therapeutic Targets of Tyrosine Kinase Inhibitors in Pancreatic Cancer. Frontiers in Oncology, 2019, 9, 1377.	2.8	9
15	RON Receptorâ€Targeted Antibodyâ€Drug Conjugate Therapy Ablates Cancer Stem Cells and Induces Longâ€term Tumor Regressions in Preclinical Models of Tripleâ€Negative Breast Cancer (TNBC). FASEB Journal, 2019, 33, 510.3.	0.5	0
16	RON Receptor Tyrosine Kinase as a Therapeutic Target for Eradication of Triple-Negative Breast Cancer: Efficacy of Anti-RON ADC Zt/g4-MMAE. Molecular Cancer Therapeutics, 2018, 17, 2654-2664.	4.1	20
17	Preclinical Efficacy of Anti-RON Antibody–Drug Conjugate Zt/g4-MMAE for Targeted Therapy of Pancreatic Cancer Overexpressing RON Receptor Tyrosine Kinase. Molecular Pharmaceutics, 2018, 15, 3260-3271.	4.6	21
18	Development of A Novel RON Targeted Antibodyâ€Drug Conjugates using Cysteine Bridging Technology for Potential Treatment of Pancreatic Cancer. FASEB Journal, 2018, 32, 807.7.	0.5	0

#	Article	IF	CITATIONS
19	Reduced RON Expression, DM1 resistance and MRP1 Upregulation Contributes to Resistance in Colon Cancer Cells against antiâ€RON Antibodyâ€Drug Conjugate Zt/g4â€DM1. FASEB Journal, 2018, 32, 281.10.	0.5	O
20	Biological evaluation of antibody-maytansinoid conjugates as a strategy of RON targeted drug delivery for treatment of non-small cell lung cancer. Journal of Experimental and Clinical Cancer Research, 2016, 35, 70.	8.6	15
21	Therapeutic evaluation of monoclonal antibody-maytansinoid conjugate as a model of RON-targeted drug delivery for pancreatic cancer treatment. American Journal of Cancer Research, 2016, 6, 937-56.	1.4	10
22	RYBP predicts survival of patients with non-small cell lung cancer and regulates tumor cell growth and the response to chemotherapy. Cancer Letters, 2015, 369, 386-395.	7.2	26
23	The pyrido[b]indole MDM2 inhibitor SP-141 exerts potent therapeutic effects in breast cancer models. Nature Communications, 2014, 5, 5086.	12.8	70
24	Efficacy of Anti-RON Antibody Zt/g4–Drug Maytansinoid Conjugation (Anti-RON ADC) as a Novel Therapeutics for Targeted Colorectal Cancer Therapy. Clinical Cancer Research, 2014, 20, 6045-6058.	7.0	27
25	Prevention of BMSâ€777607â€induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Molecular Oncology, 2014, 8, 469-482.	4.6	23
26	Synergistic Activities of MET/RON Inhibitor BMS-777607 and mTOR Inhibitor AZD8055 to Polyploid Cells Derived from Pancreatic Cancer and Cancer Stem Cells. Molecular Cancer Therapeutics, 2014, 13, 37-48.	4.1	43
27	Identification of a New Class of MDM2 Inhibitor That Inhibits Growth of Orthotopic Pancreatic Tumors in Mice. Gastroenterology, 2014, 147, 893-902.e2.	1.3	69
28	Preclinical evaluation of anti-RON antibody-drug maytansinoid conjugates (anti-RON ADC) for targeted colorectal cacner therapy Journal of Clinical Oncology, 2014, 32, 3048-3048.	1.6	41
29	MSP–RON signalling in cancer: pathogenesis and therapeutic potential. Nature Reviews Cancer, 2013, 13, 466-481.	28.4	169
30	Small-Molecule Inhibitor BMS-777607 Induces Breast Cancer Cell Polyploidy with Increased Resistance to Cytotoxic Chemotherapy Agents. Molecular Cancer Therapeutics, 2013, 12, 725-736.	4.1	53
31	Oncogenic Variant RON160 Expression in Breast Cancer and its Potential as a Therapeutic Target by Small Molecule Tyrosine Kinase Inhibitor. Current Cancer Drug Targets, 2013, 13, 686-697.	1.6	27
32	Pathogenesis of RON receptor tyrosine kinase in cancer cells: activation mechanism, functional crosstalk, and signaling addiction. Journal of Biomedical Research, 2013, 27, 345-56.	1.6	21
33	Sustained Expression of the RON Receptor Tyrosine Kinase by Pancreatic Cancer Stem Cells as a Potential Targeting Moiety for Antibody-Directed Chemotherapeutics. Molecular Pharmaceutics, 2011, 8, 2310-2319.	4.6	52
34	Targeting acute hypoxic cancer cells by doxorubicin-immunoliposomes directed by monoclonal antibodies specific to RON receptor tyrosine kinase. Cancer Chemotherapy and Pharmacology, 2011, 67, 1073-1083.	2.3	21
35	Ribosomal Protein S6 Kinase (RSK)-2 as a central effector molecule in RON receptor tyrosine kinase mediated epithelial to mesenchymal transition induced by macrophage-stimulating protein. Molecular Cancer, 2011, 10, 66.	19.2	41
36	The monoclonal antibody $Zt/f2$ targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells. Molecular Cancer, 2011, 10, 82.	19.2	50

#	Article	IF	CITATIONS
37	Monoclonal antibody (mAb)-induced down-regulation of RON receptor tyrosine kinase diminishes tumorigenic activities of colon cancer cells. International Journal of Oncology, 2010, 37, 473-82.	3.3	19
38	Inhibition of MSP-RON signaling pathway in cancer cells by a novel soluble form of RON comprising the entire sema sequence. International Journal of Oncology, 2010, 36, 1551-61.	3.3	23
39	Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacologica Sinica, 2010, 31, 1181-1188.	6.1	41
40	Deletion or insertion in the first immunoglobulin-plexin-transcription (IPT) domain differentially regulates expression and tumorigenic activities of RON receptor Tyrosine Kinase. Molecular Cancer, 2010, 9, 307.	19.2	28
41	RON Receptor Tyrosine Kinase as a Target for Delivery of Chemodrugs by Antibody Directed Pathway for Cancer Cell Cytotoxicity. Molecular Pharmaceutics, 2010, 7, 386-397.	4.6	36
42	Abstract 442: Down-regulation of MET/RON receptor tyrosine kinases in colon cancer cells under chronic hypoxia as a mechanism for resistance towards targeted therapy. , 2010, , .		1
43	Significance of the entire C-terminus in biological activities mediated by the RON receptor tyrosine kinase and its oncogenic variant RON160. Journal of Experimental and Clinical Cancer Research, 2008, 27, 55.	8.6	4
44	Blocking tumorigenic activities of colorectal cancer cells by a splicing RON receptor variant defective in the tyrosine kinase domain. Cancer Biology and Therapy, 2007, 6, 1121-1129.	3.4	27
45	Activation of RON differentially regulates claudin expression and localization: role of claudin-1 in RON-mediated epithelial cell motility. Carcinogenesis, 2007, 29, 552-559.	2.8	26
46	Multiple variants of the RON receptor tyrosine kinase: Biochemical properties, tumorigenic activities, and potential drug targets. Cancer Letters, 2007, 257, 157-164.	7.2	97
47	Oncogenesis of RON receptor tyrosine kinase: a molecular target for malignant epithelial cancers1. Acta Pharmacologica Sinica, 2006, 27, 641-650.	6.1	41
48	Agonistic monoclonal antibodies potentiate tumorigenic and invasive activities of splicing variant of the RON receptor tyrosine kinase. Cancer Biology and Therapy, 2006, 5, 1179-1186.	3.4	39
49	Mechanisms of Cytoplasmic \hat{l}^2 -Catenin Accumulation and Its Involvement in Tumorigenic Activities Mediated by Oncogenic Splicing Variant of the Receptor Originated from Nantes Tyrosine Kinase. Journal of Biological Chemistry, 2005, 280, 25087-25094.	3.4	27
50	Collaborative activities of macrophage-stimulating protein and transforming growth factor- $\hat{1}^21$ in induction of epithelial to mesenchymal transition: roles of the RON receptor tyrosine kinase. Oncogene, 2004, 23, 1668-1680.	5.9	77
51	RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectal carcinoma cells. Oncogene, 2004, 23, 8464-8474.	5.9	63
52	Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential. Oncogene, 2003, 22, 186-197.	5.9	172
53	Oncogenic and invasive potentials of human macrophage-stimulating protein receptor, the RON receptor tyrosine kinase. Carcinogenesis, 2003, 24, 1291-1300.	2.8	123
54	Activation of the RON Receptor Tyrosine Kinase by Macrophage-stimulating Protein Inhibits Inducible Cyclooxygenase-2 Expression in Murine Macrophages. Journal of Biological Chemistry, 2002, 277, 38104-38110.	3.4	49

#	ARTICLE	IF	CITATION
55	Multiple pulmonary adenomas in the lung of transgenic mice overexpressing the RON receptor tyrosine kinase. Carcinogenesis, 2002, 23, 1811-1819.	2.8	36
56	Targeted expression of the receptor tyrosine kinase RON in distal lung epithelial cells results in multiple tumor formation: oncogenic potential of RON in vivo. Oncogene, 2002, 21, 6382-6386.	5.9	46
57	Identification of a novel splicing product of the RON receptor tyrosine kinase in human colorectal carcinoma cells. Carcinogenesis, 2000, 21, 1507-1512.	2.8	65
58	Overexpression and Activation of the RON Receptor Tyrosine Kinase in a Panel of Human Colorectal Carcinoma Cell Lines. Experimental Cell Research, 2000, 261, 229-238.	2.6	89
59	Characterization of Free \hat{l}_{\pm} - and \hat{l}^2 -Chains of Recombinant Macrophage-Stimulating Protein. Archives of Biochemistry and Biophysics, 1999, 363, 356-360.	3.0	6
60	Macrophage Stimulating Protein (MSP) Binds to Its Receptor via the MSP \hat{l}^2 Chain. Journal of Biological Chemistry, 1997, 272, 16999-17004.	3.4	56
61	Macrophage-Stimulating Protein Induces Proliferation and Migration of Murine Keratinocytes. Experimental Cell Research, 1996, 226, 39-46.	2.6	101
62	Antibodies to macrophage stimulating protein (MSP): specificity, epitope interactions, and immunoassay of MSP in human serum. Journal of Leukocyte Biology, 1993, 54, 289-295.	3.3	25