Qasim A Rafiq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9288646/publications.pdf

Version: 2024-02-01

414414 361413 1,354 36 20 32 citations h-index g-index papers 39 39 39 1245 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and development of a new ambr $250 \hat{A}^{\otimes}$ bioreactor vessel for improved cell and gene therapy applications. Biotechnology Letters, 2021, 43, 1103-1116.	2.2	19
2	Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses, 2021, 13, 1528.	3.3	45
3	Process development and manufacturing approaches for mesenchymal stem cell therapies. , 2020, , 33-71.		6
4	Expansion of human mesenchymal stem/stromal cells (hMSCs) in bioreactors using microcarriers: lessons learnt and what the future holds. Biotechnology Advances, 2020, 45, 107636.	11.7	38
5	Demonstrating the Manufacture of Human CARâ€T Cells in an Automated Stirredâ€Tank Bioreactor. Biotechnology Journal, 2020, 15, e2000177.	3 . 5	20
6	CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering. Biotechnology Advances, 2019, 37, 107411.	11.7	12
7	Establishing the scalable manufacture of primary human Tâ€cells in an automated stirredâ€tank bioreactor. Biotechnology and Bioengineering, 2019, 116, 2488-2502.	3.3	20
8	Supply Chain Considerations and Strategies for Regenerative Medicine Products., 2019,,.		0
9	A scaledâ€down model for the translation of bacteriophage culture to manufacturing scale. Biotechnology and Bioengineering, 2019, 116, 972-984.	3.3	5
10	Development of a process control strategy for the serum-free microcarrier expansion of human mesenchymal stem cells towards cost-effective and commercially viable manufacturing. Biochemical Engineering Journal, 2019, 141, 200-209.	3.6	14
11	Decentralised manufacturing of cell and gene therapy products: Learning from other healthcare sectors. Biotechnology Advances, 2018, 36, 345-357.	11.7	40
12	Agitation and aeration of stirred-bioreactors for the microcarrier culture of human mesenchymal stem cells and potential implications for large-scale bioprocess development. Biochemical Engineering Journal, 2018, 136, 9-17.	3.6	28
13	Cell therapy-processing economics: small-scale microfactories as a stepping stone toward large-scale macrofactories. Regenerative Medicine, 2018, 13, 159-173.	1.7	39
14	Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA, 2018, 4, FSO290.	1.9	76
15	Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers: Utilising the phenomenon to improve culture performance. Biochemical Engineering Journal, 2018, 135, 11-21.	3.6	41
16	Centralised versus decentralised manufacturing and the delivery of healthcare products: A United Kingdom exemplar. Cytotherapy, 2018, 20, 873-890.	0.7	23
17	Process development of human multipotent stromal cell microcarrier culture using an automated highâ€throughput microbioreactor. Biotechnology and Bioengineering, 2017, 114, 2253-2266.	3.3	35
18	Decentralized manufacturing of cell and gene therapies: Overcoming challenges and identifying opportunities. Cytotherapy, 2017, 19, 1140-1151.	0.7	40

#	Article	IF	Citations
19	The role of biopreservation in cell and gene therapy bioprocessing. Cell & Gene Therapy Insights, 2017, 3, 335-344.	0.1	5
20	Mixing theory for culture and harvest in bioreactors of human mesenchymal stem cells on microcarriers. Theoretical Foundations of Chemical Engineering, 2016, 50, 895-900.	0.7	6
21	Scalability and process transfer of mesenchymal stromal cell production from monolayer to microcarrier culture using human platelet lysate. Cytotherapy, 2016, 18, 523-535.	0.7	35
22	Developing an automated robotic factory for novel stem cell therapy production. Regenerative Medicine, 2016, 11, 351-354.	1.7	22
23	Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnology Journal, 2016, 11, 473-486.	3.5	117
24	Bioreactor Engineering Fundamentals for Stem Cell Manufacturing., 2016,, 43-75.		16
25	Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochemical Engineering Journal, 2016, 108, 24-29.	3.6	73
26	Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochemical Engineering Journal, 2016, 108, 14-23.	3.6	72
27	Automating decentralized manufacturing of cell & Cene Therapy products. Cell & Gene Therapy Insights, 2016, 2, 489-497.	0.1	9
28	Cell therapies: why scale matters. Pharmaceutical Bioprocessing, 2015, 3, 97-99.	0.8	15
29	Expansion, harvest and cryopreservation of human mesenchymal stem cells in a serumâ€free microcarrier process. Biotechnology and Bioengineering, 2015, 112, 1696-1707.	3.3	71
30	Serum-free process development: improving the yield and consistency of human mesenchymal stromal cell production. Cytotherapy, 2015, 17, 1524-1535.	0.7	34
31	The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regenerative Medicine, 2015, 10, 989-1003.	1.7	4
32	A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochemical Engineering Journal, 2014, 85, 79-88.	3.6	127
33	Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Current Opinion in Chemical Engineering, 2013, 2, 8-16.	7.8	58
34	Culture of human mesenchymal stem cells on microcarriers in a 5Âl stirred-tank bioreactor. Biotechnology Letters, 2013, 35, 1233-1245.	2.2	160
35	A quantitative approach for understanding smallâ€scale human mesenchymal stem cell culture – implications for largeâ€scale bioprocess development. Biotechnology Journal, 2013, 8, 459-471.	3.5	21
36	Isolation of Mesenchymal Stem Cells from Bone Marrow Aspirate. , 2011, , 115-123.		1