Roy D Hyndman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/92876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal constraints on the zone of major thrust earthquake failure: The Cascadia Subduction Zone. Journal of Geophysical Research, 1993, 98, 2039-2060.	3.3	481
2	A mechanism for the formation of methane hydrate and seafloor bottomâ€simulating reflectors by vertical fluid expulsion. Journal of Geophysical Research, 1992, 97, 7025-7041.	3.3	335
3	The thermal structure of subduction zone back arcs. Journal of Geophysical Research, 2006, 111, .	3.3	301
4	Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 2005, 15, 4.	2.0	237
5	Rates of fluid expulsion across the Northern Cascadia Accretionary Prism: Constraints from new heat row and multichannel seismic reflection data. Journal of Geophysical Research, 1990, 95, 8869-8889.	3.3	192
6	Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope. Journal of Geophysical Research, 1996, 101, 13655-13671.	3.3	162
7	Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Bulletin of the Geological Society of America, 1989, 101, 1465-1480.	3.3	161
8	Yakutat collision and strain transfer across the northern Canadian Cordillera. Geology, 2002, 30, 495.	4.4	147
9	Tectonic sediment thickening, fluid expulsion, and the thermal regime of subduction zone accretionary prisms: The Cascadia Margin off Vancouver Island. Journal of Geophysical Research, 1993, 98, 21865-21876.	3.3	120
10	Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: Amplitude modeling and full waveform inversion. Journal of Geophysical Research, 1999, 104, 1179-1191.	3.3	89
11	Highâ€resolution, deepâ€towed, multichannel seismic survey of deepâ€sea gas hydrates off western Canada. Geophysics, 2002, 67, 1038-1047.	2.6	84
12	Queen Charlotte Area Cenozoic tectonics and volcanism and their association with relative plate motions along the northeastern Pacific Margin. Journal of Geophysical Research, 1993, 98, 14257-14277.	3.3	75
13	The Nootka Fault Zone a new plate boundary off western Canada. Geophysical Journal International, 1979, 58, 667-683.	2.4	71
14	Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect. Canadian Journal of Earth Sciences, 1992, 29, 1197-1214.	1.3	71
15	Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. Journal of Geophysical Research, 1994, 99, 4413-4427.	3.3	70
16	Effective elastic thicknessTeof the lithosphere in western Canada. Journal of Geophysical Research, 2003, 108, .	3.3	70
17	Seismicity and rates of relative motion on the plate boundaries of Western North America. Geophysical Journal International, 1983, 72, 59-82.	2.4	67
18	GPS deformation in a region of high crustal seismicity: N. Cascadia forearc. Earth and Planetary Science Letters, 2002, 198, 41-48.	4.4	67

Roy D Hyndman

#	Article	IF	CITATIONS
19	Coincident conductive and reflective middle and lower crust in southern British Columbia. Geophysical Journal International, 1995, 120, 111-131.	2.4	59
20	Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures. Journal of Geophysical Research: Solid Earth, 2013, 118, 5865-5887.	3.4	50
21	Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model. Journal of Geophysical Research, 2005, 110, .	3.3	45
22	Distribution of the Pacific/North America motion in the Queen Charlotte Islands-S. Alaska plate boundary zone. Geophysical Research Letters, 2003, 30, .	4.0	37
23	An Overview of the 28 October 2012 Mw 7.7 Earthquake in Haida Gwaii, Canada: A Tsunamigenic Thrust Event Along a Predominantly Strike-Slip Margin. Pure and Applied Geophysics, 2014, 171, 3457-3465.	1.9	33
24	Induced Seismicity in Western Canada Linked to Tectonic Strain Rate: Implications for Regional Seismic Hazard. Geophysical Research Letters, 2018, 45, 11,104.	4.0	30
25	Tectonics, Dynamics, and Seismic Hazard in the Canada-Alaska Cordillera. Geophysical Monograph Series, 0, , 297-319.	0.1	28
26	Mountain Building Orogeny in Precollision Hot Backarcs: North American Cordillera, Indiaâ€Tibet, and Grenville Province. Journal of Geophysical Research: Solid Earth, 2019, 124, 2057-2079.	3.4	21
27	Upper crustal structure of southwestern British Columbia from the 1998 Seismic Hazards Investigation in Puget Sound. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	16
28	4. Seismic Indicators of Natural Gas Hydrate and Underlying Free Gas. , 2010, , 39-71.		16
29	Submarine landslides offshore Vancouver Island along the northern Cascadia margin, British Columbia: why preconditioning is likely required to trigger slope failure. Geo-Marine Letters, 2016, 36, 323-337.	1.1	16
30	Origin of Regional Barrovian Metamorphism in Hot Backarcs Prior to Orogeny Deformation. Geochemistry, Geophysics, Geosystems, 2019, 20, 460-469.	2.5	15
31	Earthquake rate, slip rate, and the effective seismic thickness for oceanic transform faults of the Juan de Fuca plate system. Geophysical Journal International, 2005, 160, 855-868.	2.4	13
32	Hygrometric Control on the Lithosphereâ€Asthenosphere Boundary: A 28 Million Year Record From the Canadian Cordillera. Geophysical Research Letters, 2021, 48, e2020GL091957.	4.0	11
33	Geophysical and Geochemical Constraints on Neogeneâ€Recent Volcanism in the North American Cordillera. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009637.	2.5	11
34	Tectonic Consequences of a Uniformly Hot Backarc and Why is the Cordillera Mountain Belt High?. Geoscience Canada, 2015, 42, 383.	0.8	11
35	Focused Fluid Flow Along the Nootka Fault Zone and Continental Slope, Explorerâ€Juan de Fuca Plate Boundary. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009095.	2.5	2