Satomi Kuramochi-Miyagawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9286585/publications.pdf

Version: 2024-02-01

27 papers 4,742 citations

³⁶¹⁴¹³
20
h-index

27 g-index

27 all docs

27 docs citations

27 times ranked

4124 citing authors

#	Article	IF	CITATIONS
1	Effects of transgene insertion loci and copy number on Dnmt3L gene silencing through antisense transgene-derived PIWI-interacting RNAs. Rna, 2022, , rna.078905.121.	3.5	2
2	MORC3, a novel MIWI2 association partner, as an epigenetic regulator of piRNA dependent transposon silencing in male germ cells. Scientific Reports, 2021, 11, 20472.	3.3	6
3	GPAT2 is required for piRNA biogenesis, transposon silencing, and maintenance of spermatogonia in miceâ€. Biology of Reproduction, 2019, 101, 248-256.	2.7	11
4	<scp>PNLDC</scp> 1, mouse preâ€pi <scp>RNA</scp> Trimmer, is required for meiotic and postâ€meiotic male germ cell development. EMBO Reports, 2018, 19, .	4.5	64
5	Mouse <scp>GTSF</scp> 1 is an essential factor for secondary pi <scp>RNA</scp> biogenesis. EMBO Reports, 2018, 19, .	4.5	41
6	Relationship between PIWIL4-Mediated H3K4me2 Demethylation and piRNA-Dependent DNA Methylation. Cell Reports, 2018, 25, 350-356.	6.4	20
7	Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Research, 2017, 45, gkx027.	14.5	46
8	MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells. Cell Reports, 2016, 16, 2819-2828.	6.4	46
9	Induction of DNA Methylation by Artificial piRNA Production in Male Germ Cells. Current Biology, 2015, 25, 901-906.	3.9	34
10	Comprehensive DNA Methylation Analysis of Retrotransposons in Male Germ Cells. Cell Reports, 2015, 12, 1541-1547.	6.4	18
11	piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals. Rna, 2015, 21, 1691-1703.	3 . 5	59
12	Reply to Shoji and Katsuma. Current Biology, 2015, 25, R710.	3.9	3
13	HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse. Nucleic Acids Research, 2014, 42, 11903-11911.	14.5	42
14	DNA Methylation in Mouse Testes. Methods in Molecular Biology, 2014, 1093, 97-109.	0.9	2
15	Targeted gene silencing in mouse germ cells by insertion of a homologous DNA into a piRNA generating locus. Genome Research, 2013, 23, 292-299.	5 . 5	31
16	GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germline stem cells. Rna, 2013, 19, 803-810.	3 . 5	56
17	Role for piRNAs and Noncoding RNA in de Novo DNA Methylation of the Imprinted Mouse <i>Rasgrf1</i> Locus. Science, 2011, 332, 848-852.	12.6	341
18	MITOPLD Is a Mitochondrial Protein Essential for Nuage Formation and piRNA Biogenesis in the Mouse Germline. Developmental Cell, 2011, 20, 364-375.	7.0	250

#	Article	IF	Citations
19	MVH in piRNA processing and gene silencing of retrotransposons. Genes and Development, 2010, 24, 887-892.	5.9	219
20	RNA silencing in germlines—exquisite collaboration of Argonaute proteins with small RNAs for germline survival. Current Opinion in Cell Biology, 2009, 21, 426-434.	5.4	35
21	Associations between PIWI proteins and TDRD1/MTRâ€1 are critical for integrated subcellular localization in murine male germ cells. Genes To Cells, 2009, 14, 1155-1165.	1.2	58
22	The TDRD9-MIWI2 Complex Is Essential for piRNA-Mediated Retrotransposon Silencing in the Mouse Male Germline. Developmental Cell, 2009, 17, 775-787.	7.0	297
23	Gtsf1/Cue110, a gene encoding a protein with two copies of a CHHC Zn-finger motif, is involved in spermatogenesis and retrotransposon suppression in murine testes. Developmental Biology, 2009, 335, 216-227.	2.0	59
24	DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes and Development, 2008, 22, 908-917.	5.9	790
25	A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006, 442, 203-207.	27.8	1,303
26	<i>Mili</i> , a mammalian member of <i>piwi</i> family gene, is essential for spermatogenesis. Development (Cambridge), 2004, 131, 839-849.	2.5	666
27	Two mouse piwi-related genes: miwi and mili. Mechanisms of Development, 2001, 108, 121-133.	1.7	243